

Dallinger

Dallinger is a tool to automate experiments that use combinations of automated bots and human subjects recruited on platforms like Mechanical Turk.

Dallinger allows crowd sourced experiments to be abstracted into single function calls that can be inserted into higher-order algorithms. It fully automates the process of recruiting participants, obtaining informed consent, arranging participants into a network, running the experiment, coordinating communication, recording and managing the data, and paying the participants.

The Dallinger technology stack consists of: Python, Redis, Web Sockets, Heroku, AWS, Mechanical Turk, boto, Flask, PostgreSQL, SQLAlchemy, Gunicorn, Pytest and gevent among others.

User Documentation

These documentation topics are intended to assist people who are attempting
to launch experiments and analyse their data. They cover the basics of installing
and setting up Dallinger, as well as use of the command line tools.

User Documentation

	Installation

	Setting Up AWS, Mechanical Turk, and Heroku

	Demoing Dallinger

	Command-Line Utility

	Configuration

	Email Notification Setup

	Running Experiments Programmatically

	Monitoring a Live Experiment

	Experiment Data

	Viewing the PostgreSQL Database

	Running bots as participants

	Registration on the OSF

	Troubleshooting

Beginner Documentation

Many Dallinger users may not have lots of programming experience, and might
want a bit more information about the inner workings of Dallinger in a
beginner-friendly format. Thomas Morgan has started such a project:
“Dallinger for Programming Novices”. Every Dallinger user is encouraged to take a look at this guide, which is a
nice complement to the documentation presented here.

Beginner Documentation

	Dallinger for Programming Novices [https://github.com/thomasmorgan/dallinger-for-novices]

Dallinger Demos

Several demos demonstrate Dallinger in action:

Dallinger Demos

	Dallinger Demos

Experiment Author Documentation

These documentation topics build on the previous set to include help with
designing new experiments for others to use.

Experiment Author Documentation

	Developer Installation

	Creating an Experiment

	Networks

	Dallinger with Docker

	The Experiment Class

	Database API

	Web API

	Communicating With the Server

	Javascript API

	Rewarding participants

	Waiting rooms

	Writing bots

	Extra Configuration

	Recruitment

	Private repositories

Core Contribution Documentation

This section covers extra topics relevant to those wishing to contribute to the development of Dallinger itself. This is not needed
in order to develop new experiments. Follow the Developer Installation process from the previous section to get started.

Core Contribution Documentation

	Running the tests

	Contributing to Dallinger Documentation

	Releasing a new version of Dallinger

General Information

General Information

	Acknowledgments

	Dallinger’s incubator

Installation

If you would like to contribute to Dallinger, please follow these
alternative install
instructions.

Installation Options

Dallinger is tested with Ubuntu 18.04 LTS, 16.04 LTS, 14.04 LTS and Mac OS X locally.
We do not recommended running Dallinger with Microsoft Windows, however if you do, running Ubuntu in a virtual machine is the recommend method.

Using Dallinger with Docker

Docker is a containerization tool used for developing isolated software environments. Read more about using Dallinger with Docker here.

Mac OS X

Install Python

Dallinger is written in the language Python. For it to work, you will need
to have Python 2.7 installed, or alternatively Python 3.6 or higher. Python 3 is the preferred option.
You can check what version of Python you have by running:

python --version

Note

You will also need to have pip [https://pip.pypa.io/en/stable] installed. It is included in some of the later versions of Python 3, but not all. (pip is a package manager for Python packages, or modules if you like.) If you are using Python 3, you may find that you may need to use the pip3 command instead of pip where applicable in the instructions that follow.

Using Homebrew will install the latest version of Python and pip by default.

brew install python

This will install the latest Python3 and pip3.

You can also use the preinstalled Python in Mac OS X, currently Python 2.7 as of writing.

If you installed Python 3 with Homebrew, you should now be able to run the python3 command from the terminal.
If the command cannot be found, check the Homebrew installation log to see
if there were any errors. Sometimes there are problems symlinking Python 3 to
the python3 command. If this is the case for you, look here [https://stackoverflow.com/questions/27784545/brew-error-could-not-symlink-path-is-not-writable] for clues to assist you.

With the preinstalled Python in Mac OS X, you will need to install pip yourself. You can use:

sudo easy_install pip

Should that not work for whatever reason, you can search here [https://docs.python-guide.org/] for more clues.

Install Postgresql

On Mac OS X, we recommend installing using Homebrew:

brew install postgresql

Postgresql can then be started and stopped using:

brew services start postgresql
brew services stop postgresql

Create the databases

After installing Postgres, you will need to create two databases:
one for your experiments to use, and a second to support importing saved
experiments. It is recommended that you also create a database user.

Naviagate to a terminal and type:

createuser -P dallinger --createdb
(Password: dallinger)
createdb -O dallinger dallinger
createdb -O dallinger dallinger-import

The first command will create a user named dallinger and prompt you for a
password. The second and third command will create the dallinger and
dallinger-import databases, setting the newly created user as the owner.

You can optionally inspect your databases by entering psql dallinger.
Inside psql you can use commands to see the roles and database tables:

\du
\l

To quit:

\q

If you get an error like the following:

createuser: could not connect to database postgres: could not connect to server:
 Is the server running locally and accepting
 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

then postgres is not running. Start postgres as described in the Install Postgresql section above.

Install Heroku

To run experiments locally or on the internet, you will need the Heroku Command
Line Interface installed, version 3.28.0 or better. If you want to launch experiments on the internet, then
you will also need a Heroku.com account, however this is not needed for local debugging.

To check which version of the Heroku CLI you have installed, run:

heroku --version

To install:

brew install heroku/brew/heroku

More information on the Heroku CLI is available at heroku.com [https://devcenter.heroku.com/articles/heroku-cli] along with alternative installation instructions, if needed.

Install Redis

Debugging experiments requires you to have Redis installed and the Redis
server running.

brew install redis

Start Redis on Mac OS X with:

brew services start redis

You can find more details and other installation instructions at redis.com [https://redis.io/topics/quickstart].

Install Git

Dallinger uses Git, a distributed version control system, for version control of its code.
If you do not have it installed, you can install it as follows:

brew install git

You will need to configure your Git name and email:

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

Replace you@example.com and Your Name with your email and name to set your account’s default identity.
Omit –global to set the identity only in this repository. You can read more about configuring Git here [https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup/].

Set up a virtual environment

Why use virtualenv?

Virtualenv solves a very specific problem: it allows multiple Python projects
that have different (and often conflicting) requirements, to coexist on the same computer.
If you want to understand this in detail, you can read more about it here [https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/].

Now let’s set up a virtual environment by running the following commands:

If using Python 2.7 and pip:

pip install virtualenv
pip install virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
mkdir -p $WORKON_HOME
export VIRTUALENVWRAPPER_PYTHON=$(which python)
source $(which virtualenvwrapper.sh)

If using Python 3.x and pip3 (Python 3.7 in this example):

pip3 install virtualenv
pip3 install virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
mkdir -p $WORKON_HOME
export VIRTUALENVWRAPPER_PYTHON=$(which python3.7)
source $(which virtualenvwrapper.sh)

Now create the virtual environment using:

mkvirtualenv dlgr_env --python <specify_your_python_path_here>

Examples:

Using homebrew installed Python 3.7:

mkvirtualenv dlgr_env --python /usr/local/bin/python3.7

Using Python 2.7:

mkvirtualenv dlgr_env --python /usr/bin/python

Virtualenvwrapper provides an easy way to switch between virtual environments
by simply typing: workon [virtual environment name].

The technical details:

These commands use pip/pip3, the Python package manager, to install two
packages virtualenv and virtualenvwrapper. They set up an
environmental variable named WORKON_HOME with a string that gives a
path to a subfolder of your home directory (~) called Envs,
which the next command (mkdir) then makes according to the path
described in $WORKON_HOME (recursively, due to the -p flag).
That is where your environments will be stored. The source command
will run the command that follows, which in this case locates the
virtualenvwrapper.sh shell script, the contents of which are beyond
the scope of this setup tutorial. If you want to know what it does, a
more in depth description can be found on the documentation site for virtualenvwrapper [http://virtualenvwrapper.readthedocs.io/en/latest/install.html#python-interpreter-virtualenv-and-path].

Finally, the mkvirtualenv makes your first virtual environment which
you’ve named dlgr_env. We have explicitly passed it the location of the Python
that the virtualenv should use. This Python has been mapped to the python
command inside the virtual environment.

The how-to:

In the future, you can work on your virtual environment by running:
Python 2.7

export VIRTUALENVWRAPPER_PYTHON=$(which python)
source $(which virtualenvwrapper.sh)
workon dlgr_env

Python 3.x

export VIRTUALENVWRAPPER_PYTHON=$(which python3.7)
source $(which virtualenvwrapper.sh)
workon dlgr_env

NB: To stop working in the virtual environment, run deactivate. To
list all available virtual environments, run workon with no
arguments.

If you plan to do a lot of work with Dallinger, you can make your shell
execute the virtualenvwrapper.sh script everytime you open a terminal. To
do that type:

Python 2.7

echo "export VIRTUALENVWRAPPER_PYTHON=$(which python)" >> ~/.bash_profile
echo "source $(which virtualenvwrapper.sh)" >> ~/.bash_profile

Python 3.x

echo "export VIRTUALENVWRAPPER_PYTHON=$(which python3.7)" >> ~/.bash_profile
echo "source $(which virtualenvwrapper.sh)" >> ~/.bash_profile

From then on, you only need to use the workon command before starting.

Install Dallinger

Install Dallinger from the terminal by running

pip install dallinger[data]

Test that your installation works by running:

dallinger --version

Next, you’ll need access keys for AWS, Heroku,
etc..

Ubuntu

Install Python

Dallinger is written in the language Python. For it to work, you will need
to have Python 2.7 installed, or alternatively Python 3.6 or higher. Python 3 is the preferred option.
You can check what version of Python you have by running:

python --version

Ubuntu 18.04 LTS ships with Python 3.6.

Ubuntu 16.04 LTS ships with Python 3.5, while Ubuntu 14.04 LTS ships with Python 3.4. In case you are using one of these distributions of Ubuntu, you can use Dallinger with Python 2.7 or upgrade to the latest Python 3.x on your own.

(All three of these Ubuntu versions also provide a version of Python 2.7)

If you do not have Python 3 installed, you can install it from the
Python website [https://www.python.org/downloads/].

Also make sure you have the python headers installed. The python-dev package
contains the header files you need to build Python extensions appropriate to the Python version you will be using.

Note

You will also need to have pip [https://pip.pypa.io/en/stable] installed. It is included in some of the later versions of Python 3, but not all. (pip is a package manager for Python packages, or modules if you like.) If you are using Python 3, you may find that you may need to use the pip3 command instead of pip where applicable in the instructions that follow.

If using Python 2.7.x:

sudo apt-get install python-dev
sudo apt install -y python-pip

If using Python 3.x:

sudo apt-get install python3-dev
sudo apt install -y python3-pip

Install Postgresql

The lowest version of Postgresql that Dallinger v5 supports is 9.4.

This is fine for Ubuntu 18.04 LTS and 16.04 LTS as they
ship with Postgresql 10.4 and 9.5 respectively, however Ubuntu 14.04 LTS ships with Postgresql 9.3

Postgres can be installed using the following instructions:

Ubuntu 18.04 LTS or Ubuntu 16.04 LTS:

sudo apt-get update && sudo apt-get install -y postgresql postgresql-contrib libpq-dev

To run postgres, use the following command:

sudo service postgresql start

Ubuntu 14.04 LTS:

Create the file /etc/apt/sources.list.d/pgdg.list and add a line for the repository:

sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/ `lsb_release -cs`-pgdg main" >> /etc/apt/sources.list.d/pgdg.list'

Import the repository signing key, update the package lists and install postgresql:

wget -q https://www.postgresql.org/media/keys/ACCC4CF8.asc -O - | sudo apt-key add -
sudo apt-get update && sudo apt-get install -y postgresql postgresql-contrib

To run postgres, use the following command:

sudo service postgresql start

Create the databases

Make sure that postgres is running. Switch to the postgres user:

sudo -u postgres -i

Run the following commands:

createuser -P dallinger --createdb
(Password: dallinger)
createdb -O dallinger dallinger
createdb -O dallinger dallinger-import
exit

The second command will create a user named dallinger and prompt you for a
password. The third and fourth commands will create the dallinger and dallinger-import databases, setting
the newly created user as the owner.

Finally restart postgresql:

sudo service postgresql reload

Install Heroku

To run experiments locally or on the internet, you will need the Heroku Command
Line Interface installed, version 3.28.0 or better. If you want to launch experiments on the internet, then
you will also need a Heroku.com account, however this is not needed for local debugging.

To check which version of the Heroku CLI you have installed, run:

heroku --version

To install:

sudo apt-get install curl
curl https://cli-assets.heroku.com/install.sh | sh

More information on the Heroku CLI is available at heroku.com [https://devcenter.heroku.com/articles/heroku-cli] along with alternative installation instructions, if needed.

Install Redis

Debugging experiments requires you to have Redis installed and the Redis
server running.

sudo apt-get install -y redis-server

Start Redis on Ubuntu with:

sudo service redis-server start

You can find more details and other installation instructions at redis.com [https://redis.io/topics/quickstart].

Install Git

Dallinger uses Git, a distributed version control system, for version control of its code.
If you do not have it installed, you can install it as follows:

sudo apt install git

You will need to configure your Git name and email:

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

Replace you@example.com and Your Name with your email and name to set your account’s default identity.
Omit –global to set the identity only in this repository. You can read more about configuring Git here [https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup/].

Set up a virtual environment

Why use virtualenv?

Virtualenv solves a very specific problem: it allows multiple Python projects
that have different (and often conflicting) requirements, to coexist on the same computer.
If you want to understand this in detail, you can read more about it here [https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/].

Now let’s set up a virtual environment by running the following commands:

If using Python 2.7 and pip:

sudo pip install virtualenv
sudo pip install virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
mkdir -p $WORKON_HOME
source /usr/share/virtualenvwrapper/virtualenvwrapper.sh

Note

If the last line failed with “No such file or directory”. Try using source /usr/local/bin/virtualenvwrapper.sh instead. Pip installs virtualenvwrapper.sh to different locations depending on the Ubuntu version.

If using Python 3.x and pip3:

sudo pip3 install virtualenv
sudo pip3 install virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
mkdir -p $WORKON_HOME
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
source /usr/local/bin/virtualenvwrapper.sh

Now create the virtualenv using the mkvirtualenv command as follows:

If you are using Python 3 that is part of your Ubuntu installation (Ubuntu 18.04):

mkvirtualenv dlgr_env --python /usr/bin/python3

If you are using Python 2 that is part of your Ubuntu installation:

mkvirtualenv dlgr_env --python /usr/bin/python

If you are using another Python version
(eg. custom installed Python 3.x on Ubuntu 16.04 or Ubuntu 14.04):

mkvirtualenv dlgr_env --python <specify_your_python_path_here>

Virtualenvwrapper provides an easy way to switch between virtual environments
by simply typing: workon [virtual environment name].

The technical details:

These commands use pip, the Python package manager, to install two
packages virtualenv and virtualenvwrapper. They set up an
environmental variable named WORKON_HOME with a string that gives a
path to a subfolder of your home directory (~) called Envs,
which the next command (mkdir) then makes according to the path
described in $WORKON_HOME (recursively, due to the -p flag).
That is where your environments will be stored. The source command
will run the command that follows, which in this case locates the
virtualenvwrapper.sh shell script, the contents of which are beyond
the scope of this setup tutorial. If you want to know what it does, a
more in depth description can be found on the documentation site for virtualenvwrapper [http://virtualenvwrapper.readthedocs.io/en/latest/install.html#python-interpreter-virtualenv-and-path].

Finally, the mkvirtualenv makes your first virtual environment which
you’ve named dlgr_env. We have explicitly passed it the location of the Python
that the virtualenv should use. This Python has been mapped to the python
command inside the virtual environment.

The how-to:

In the future, you can work on your virtual environment by running:
If using Python 2.7 and pip:

source /usr/share/virtualenvwrapper/virtualenvwrapper.sh
workon dlgr_env

If using Python 3.x and pip3:

source /usr/local/bin/virtualenvwrapper.sh
workon dlgr_env

NB: To stop working in the virtual environment, run deactivate. To
list all available virtual environments, run workon with no
arguments.

If you plan to do a lot of work with Dallinger, you can make your shell
execute the virtualenvwrapper.sh script everytime you open a terminal. To
do that:

If using Python 2.7 and pip:

echo "source /usr/share/virtualenvwrapper/virtualenvwrapper.sh" >> ~/.bashrc

If using Python 3.x and pip3:

echo "source /usr/local/bin/virtualenvwrapper.sh" >> ~/.bashrc

From then on, you only need to use the workon command before starting.

Install Dallinger

Install Dallinger from the terminal by running

pip install dallinger[data]

Test that your installation works by running:

dallinger --version

Next, you’ll need access keys for AWS, Heroku,
etc..

Setting Up AWS, Mechanical Turk, and Heroku

Before you can use Dallinger, you will need accounts with Amazon Web
Services, Amazon Mechanical Turk, and Heroku. You will then need to
create a configuration file and set up your environment so that
Dallinger can access your accounts.

Create the configuration file

The first step is to create the Dallinger configuration file in your home
directory. You can do this using the Dallinger command-line utility
through

dallinger setup

which will prepopulate a hidden file .dallingerconfig in your home
directory. Alternatively, you can create this file yourself and fill it
in like so:

[AWS Access]
aws_access_key_id = ???
aws_secret_access_key = ???
aws_region = us-east-1

In the next steps, we’ll fill in your config file with keys.

Note: The .dallingerconfig can be configured with many different parameters, see
Configuration for detailed explanation of each configuration option.

Amazon Web Services API Keys

There are two ways to get API keys for Amazon Web Services. If you are the only
user in your AWS account, the simplest thing to do is generate root user access
keys, by following these instructions [http://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html].
You might be presented a dialog box with options to continue to security
credentials, or get started with IAM users. If you are the only user, or you
are otherwise certain that this is what you want to do (see the following note),
choose “Continue to Security Credentials”.

N.B. One feature of AWS API keys is that they are only displayed
once, and though they can be regenerated, doing so will render invalid
previously generated keys. If you are running experiments using a
laboratory account (or any other kind of group-owned account),
regenerating keys will stop other users who have previously generated
keys from being able to use the AWS account. Unless you are sure that
you will not be interrupting others’ workflows, it is advised that you
do not generate new API keys. If you are not the primary user of the
account, see if you can obtain these keys from others who have
successfully used AWS.

If you are not the primary user of your AWS account, or are part of a working
group that shares the account, the recommended way to create the access keys is
by creating AIM users and generating keys for them. If someone else manages
the AWS account, ask them to generate the user and keys for you. If you need
to manage the users and keys by yourself, follow these instructions [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html].

After you have generated and saved your AWS access keys, fill in the following
lines of .dallingerconfig, replacing ??? with your keys:

[AWS Access]
aws_access_key_id = ???
aws_secret_access_key = ???

Amazon Mechanical Turk

It’s worth signing up for Amazon Mechanical Turk (perhaps using your AWS
account from above), both as a
requester [https://requester.mturk.com/mturk/beginsignin] and as a
worker [https://www.mturk.com/mturk/beginsignin]. You’ll use this to
test and monitor experiments. You should also sign in to each sandbox,
requester [https://requester.mturk.com/begin_signin] and
worker [https://workersandbox.mturk.com/mturk/welcome] using the
same account. Store this account and password somewhere, but you don’t
need to tell it to Dallinger.

Heroku

Next, sign up for a Heroku [https://www.heroku.com/] account.

You should see an interface that looks something like the following:

[image: This is the interface with the Heroku app]
This is the interface with the Heroku app

Then, log in from the command line:

heroku login

Open Science Framework (optional)

There is an optional integration that uses the Open Science Framework [https://osf.io/] (OSF) to register experiments. First, create an account
on the OSF. Next create a new OSF personal access token on the OSF settings
page [https://osf.io/settings/tokens/]. Since experiment registration
requires writing to the OSF account, be sure to grant the full write scope
when creating the token, by checking the osf.full_write box before creation.

Finally, fill in the appropriate section of .dallingerconfig:

[OSF]
osf_access_token = ???

Done?

Done. You’re now all set up with the tools you need to work with
Dallinger.

Next, we’ll test Dallinger to make sure it’s working on your
system.

Demoing Dallinger

First, make sure you have Dallinger installed:

	Installation

	Developer Installation

To test out Dallinger, we’ll run a demo experiment in “debug” mode.

Note

Running the demo in “sandbox” mode as opposed to “debug” mode will require a Heroku account.
More information for running in “sandbox” mode.

You can read more about this experiment here:
Bartlett (1932) demo [http://dallinger.readthedocs.io/en/latest/demos/bartlett1932/index.html].

The experiment files can be found here [https://dallinger.readthedocs.io/en/latest/_static/bartlett1932.zip]. Extract them to a location of your choice, then from there, navigate to the bartlett1932 directory and run:

dallinger debug --verbose

If applicable, make sure that your virtualenv is enabled so that the dallinger command is available to you.
All Dallinger command options are explained in the Command-line Utility” section.

Note

In the command above, we use the “–verbose” option to show more detailed logs in the terminal. This is a good best practice when creating and running your own experiments and gives more insight into errors when they occur.

You will see some output as Dallinger loads. When it is finished, you will
see something that looks like:

12:00:00 PM web.1 | 2017-01-01 12:00:00,000 New participant requested: http://0.0.0.0:5000/ad?assignmentId=debug9TXPFF&hitId=P8UTMZ&workerId=SP7HJ4&mode=debug

and your browser should automatically open to this URL.
You can start interacting as the first participant in the experiment.

In the terminal, press Ctrl+C to exit the server.

Help, the experiment page is blank! This may happen if you are using
an ad-blocker. Try disabling your ad-blocker and refresh the page.

It is worth noting here that occasionally if an experiment does not exit gracefully,
one maybe required to manually cleanup some left over python processes, before running the same or another experiment with dallinger.
See Troubleshooting for details.

Command-Line Utility

Dallinger is executed from the command line within the experiment directory with the following commands:

verify

Verify that a directory is a Dallinger-compatible app. A number of checks are run here:

	Required files are verified to exist

	The cumulative size of all experiment files is checked to make sure large files or
directories are not accidentally included (note that files excluded with a .gitignore
file are not included in this size total)

	The experiment.py file is checked to make sure it includes a single Experiment subclass

	The configuration for base_payment from config.txt is validated

	Included files are checked for name conflicts with core Dallinger files

bot

Spawn a bot and attach it to the specified application. The --debug parameter
connects the bot to the locally running instance of Dallinger. Alternatively,
the --app <app> parameter specifies a live experiment by its id.

debug

Run the experiment locally. An optional --verbose flag prints more detailed
logs to the command line. Use the optional --bot flag to use a bot to
complete the experiment and the optional --proxy parameter can be used to
specify an alternative port when opening browser windows.

sandbox

Runs the experiment on MTurk’s sandbox using Heroku as a server. An optional
--verbose flag prints more detailed logs to the command line. An optional
--app <app> parameter specifies the experiment id, if not specified, a new
unique experiment experiment id is automatically generated.

deploy

Runs the experiment live on MTurk using Heroku as a server. An optional
--verbose flag prints more detailed logs to the command line. An optional
--bot flag forces the bot recruiter to be used, rather than the configured
recruiter. An optional --app <app> parameter specifies the experiment id,
if not specified, a new unique experiment id is automatically generated.

logs

Open the app’s logs in Papertrail. A required --app <app> parameter
specifies the experiment by its id.

summary

Return a summary of an experiment. A required --app <app> parameter
specifies the experiment by its id.

export

Download the database and partial server logs to a zipped folder within
the data directory of the experimental folder. Databases are stored in
CSV format. A required --app <app> parameter specifies the experiment by its
id. Use the optional --local flag if exporting a local experiment data.
An optional --no-scrub flag will stop the scrubbing of personally
identifiable information in the export. The scrubbing of PII is enabled by
default.

email_test

Validate email settings derived from Dallinger Configuration and send a test
email if the configuration appears valid.

The test email will use dallinger_email_address as the sender and
contact_email_on_error as the recipient.

compensate

Compensate a worker a specific amount in US dollars. This is useful if something
goes wrong with the experiment and you need to pay workers for their wasted
time. Currently only the mturk recruiter is supported, and is the default,
so doesn’t need to be specified.

	For Mechanical Turk, compensation is acheived by:

	
	Creating a unique qualification and assigning it to the worker

	Creating a very simple HIT which is only visible to workers with this
qualification, using the dollar amount specified in the command as the
base payment

	Automatically approving (and thus granting base payment) when the HIT
is submitted.

	Usage:

	
	--worker_id (required) - The worker’s identifier

	--dollars (required) - The amount to pay, in US dollars

	--sandbox (optional flag) - If present, the compensation will be made
via the test platform (the MTurk Sandbox)

	--no_email (optional flag) - If present, no email notification will be
sent to the worker.

qualify

Assign a Mechanical Turk qualification to one or more workers.
This is useful when compensating workers if something goes wrong with
the experiment. Requires a --qualification parameter, which is a
qualification ID, (or, if the --by_name is used, a qualification name),
value --value parameter, and a list of one or more worker IDs, passed at
the end of the command. The optional --notify flag can be used to notify
workers via email. You can also optionally specify the --sandbox flag to use
the MTurk sandbox.

revoke

Revoke a Mechanical Turk qualification for one or more workers.
This is useful when developing an experiment with “insider” participants,
who would otherwise be prevented from accepting a HIT for an experiment
they’ve already participated in.
Requires a --qualification, which is a qualification ID, (or, if
the --by_name is used, a qualification name), an optional --reason
string, and a list of one or more MTurk worker IDs. You can also optionally
specify the --sandbox flag to use the MTurk sandbox.

hibernate

Temporarily scales down the specified app to save money. All dynos are
removed and so are many of the add-ons. Hibernating apps are
non-functional. It is likely that the app will not be entirely free
while hibernating. To restore the app use awaken. A required
--app <app> parameter specifies the experiment by its id.

awaken

Restore a hibernating app. A required --app <app> parameter specifies the
experiment by its id.

destroy

Tear down an experiment server. A required --app <app> parameter
specifies the experiment by its id. Optional --expire-hit flag
can be provided to force expiration of MTurk HITs associated with the
app (--no-expire-hit can be used to disable HIT expiration). If app
is sandboxed, you will need to use the --sandbox flag to expire HITs
from the MTurk sandbox.

hits

List all MTurk HITs for a dallinger app. A required --app <app>
parameter specifies the experiment by its id. An optional --sandbox
flag indicates to look for HITs in the MTurk sandbox.

expire

Expire all MTurk HITs for a dallinger app. A required --app <app>
parameter specifies the experiment by its id. An optional --sandbox
flag indicates to look for HITs in the MTurk sandbox.

apps

List all running heroku apps associated with the currently logged in
heroku account. Returns the Dallinger app UID, app launch timestamp,
and heroku app url for each running app.

monitor

Monitor a live Dallinger experiment. A required --app <app> parameter
specifies the experiment by its id.

load

Import database state from an exported zip file and leave the server
running until stopping the process with <control>-c.
A required --app <app> parameter specifies the experiment by its id.
An optional --verbose flag prints more detailed logs to the command line.
Use the optional --replay flag to start the experiment locally in replay
mode after loading the data into the local database.

setup

Create the Dallinger config file if it does not already exist.

uuid

Generate a new unique identifier.

rq_worker

Start an rq worker in the context of Dallinger.
This command can potentially be useful during the development/debugging process.

Configuration

The Dallinger configuration module provides tools for reading and writing
configuration parameters that control the behavior of an experiment. To use the
configuration, first import the module and get the configuration object:

import dallinger

config = dallinger.config.get_config()

You can then get and set parameters:

config.get("duration")
config.set("duration", 0.50)

When retrieving a configuration parameter, Dallinger will look for the parameter
first among environment variables, then in a config.txt in the experiment
directory, and then in the .dallingerconfig file, using whichever value
is found first. If the parameter is not found, Dallinger will use the default.

Built-in configuration

Built-in configuration parameters, grouped into categories:

General

	mode unicode

	Run the experiment in this mode. Options include debug (local testing),
sandbox (MTurk sandbox), and live (MTurk).

	logfile unicode

	Where to write logs.

	loglevel unicode

	A number between 0 and 4 that controls the verbosity of logs, from debug
to critical. Note that dallinger debug ignores this setting and always
runs at 0 (debug).

	whimsical boolean

	What’s life without whimsy? Controls whether email notifications sent
regarding various experiment errors are whimsical in tone, or more
matter-of-fact.

Recruitment (General)

	auto_recruit boolean

	A boolean on whether recruitment should be automatic.

	browser_exclude_rule unicode - comma separated

	A set of rules you can apply to prevent participants with unsupported web
browsers from participating in your experiment.

	recruiter unicode

	The recruiter class to use during the experiment run. While this can be a
full class name, it is more common to use the class’s nickname property
for this value; for example mturk, cli, bots, or multi.
NOTE: when running in debug mode, the HotAir (hotair) recruiter will
always be used. The exception is if the --bots option is passed to
dallinger debug, in which case the BotRecruiter will be used instead.

	recruiters unicode - custom format

	When using multiple recruiters in a single experiment run via the multi
setting for the recruiter config key, recruiters allows you to
specify which recruiters you’d like to use, and how many participants to
recruit from each. The special syntax for this value is:

recruiters = [nickname 1]: [recruits], [nickname 2]: [recruits], etc.

For example, to recruit 5 human participants via MTurk, and 5 bot participants,
the configuration would be:

recruiters = mturk: 5, bots: 5

Amazon Mechanical Turk Recruitment

	aws_access_key_id unicode

	AWS access key ID.

	aws_secret_access_key unicode

	AWS access key secret.

	aws_region unicode

	AWS region to use. Defaults to us-east-1.

	ad_group unicode

	Obsolete. See group_name.

	assign_qualifications boolean

	A boolean which controls whether an experiment-specific qualification
(based on the experiment ID), and a group qualification (based on the value
of group_name) will be assigned to participants by the recruiter.
This feature assumes a recruiter which supports qualifications,
like the MTurkRecruiter.

	group_name unicode

	Assign a named qualification to workers who complete a HIT.

	qualification_blacklist unicode - comma seperated

	Comma-separated list of qualification names. Workers with qualifications in
this list will be prevented from viewing and accepting the HIT.

	title unicode

	The title of the HIT on Amazon Mechanical Turk.

	description unicode

	The description of the HIT on Amazon Mechanical Turk.

	keywords unicode

	A comma-separated list of keywords to use on Amazon Mechanical Turk.

	lifetime integer

	How long in hours that your HIT remains visible to workers.

	duration float

	How long in hours participants have until the HIT will time out.

	us_only boolean

	Controls whether this HIT is available only to MTurk workers in the U.S.

	base_payment float

	Base payment in U.S. dollars. All workers who accept the HIT are guaranteed
this much compensation.

	approve_requirement integer

	The percentage of past MTurk HITs that must have been approved for a worker
to qualify to participate in your experiment. 1-100.

	organization_name unicode

	Obsolete.

Preventing Repeat Participants

If you set a group_name and assign_qualifications is also set to
true, workers who complete your HIT will be given an MTurk qualification for
your group_name. In the future, you can prevent these workers from
participating in a HIT with the same group_name by including that name in
the qualification_blacklist configuration. These four configuration keys
work together to create a system to prevent recuiting workers who have already
completed a prior run of the same experiment.

Email Notifications

See Email Notification Setup for a much more detailed
explanation of these values and their use.

	contact_email_on_error unicode

	The email address used as the recipient for error report emails, and the email displayed to workers when there is an error.

	dallinger_email_address unicode

	An email address for use by Dallinger to send status emails.

	smtp_host unicode

	Hostname and port of a mail server for outgoing mail. Defaults to smtp.gmail.com:587

	smtp_username unicode

	Username for outgoing mail host.

	smtp_password unicode

	Password for the outgoing mail host.

Deployment Configuration

	database_url unicode

	URI of the Postgres database.

	database_size unicode

	Size of the database on Heroku. See Heroku Postgres plans [https://devcenter.heroku.com/articles/heroku-postgres-plans].

	dyno_type unicode

	Heroku dyno type to use. See Heroku dynos types [https://devcenter.heroku.com/articles/dyno-types].

	redis_size unicode

	Size of the redis server on Heroku. See Heroku Redis [https://elements.heroku.com/addons/heroku-redis].

	num_dynos_web integer

	Number of Heroku dynos to use for processing incoming HTTP requests. It is
recommended that you use at least two.

	num_dynos_worker integer

	Number of Heroku dynos to use for performing other computations.

	host unicode

	IP address of the host.

	port unicode

	Port of the host.

	clock_on boolean

	If the clock process is on, it will perform a series of checks that ensure
the integrity of the database.

	heroku_python_version unicode

	The python version to be used on Heroku deployments. The version specification will
be deployed to Heroku in a runtime.txt file in accordance with Heroku’s deployment
API. Note that only the version number should be provided (eg: “2.7.14”) and not the
“python-” prefix included in the final runtime.txt format.
See Dallinger’s global_config_defaults.txt for the current default version.
See Heroku supported runtimes [https://devcenter.heroku.com/articles/python-support#supported-runtimes].

	heroku_team unicode

	The name of the Heroku team to which all applications will be assigned.
This is useful for centralized billing. Note, however, that it will prevent
you from using free-tier dynos.

	worker_multiplier float

	Multiplier used to determine the number of gunicorn web worker processes
started per Heroku CPU count. Reduce this if you see Heroku warnings
about memory limits for your experiment. Default is 1.5

Choosing configuration values

When running real experiments it is important to pick configuration variables that
result in a deployment that performs appropriately.

The number of Heroku dynos that are required and their specifications can make a
very large difference to how the application behaves.

	num_dynos_web

	This configuration variable determines how many dynos are run to deal with
web traffic. They will be transparently load-balanced, so the more web dynos are
started the more simultaneous HTTP requests the stack can handle.
If an experiment defines the channel variable to subscribe to websocket events
then all of these callbacks happen on the dyno that handles the initial /launch
POST, so experiments that use this functionality heavily receive significantly
less benefit from increasing num_dynos_web.
The optimum value differs between experiments, but a good rule of thumb is 1 web
dyno for every 10-20 simultaneous human users.

	num_dynos_worker

	Workers are dynos that pull tasks from a queue and execute them in the background.
They are optimized for many short tasks, but they are also used to run bots which
are very long-lived. Each worker can run up to 20 concurrent tasks, however they
are co-operatively multitasked so a poorly behaving task can cause all others
sharing its host to block.
When running with bots, you should always pick a value of num_dynos_worker` that
is at least ``0.05*number_of_bots, otherwise it is guaranteed to fail. In practice,
there may well be experiment-specific tasks that also need to execute, and bots are
more performant on underloaded dynos, so a better heuristic is 0.25*number_of_bots.

	dyno_type

	This determines how powerful the heroku dynos started by Dallinger are. It is applied
as the default for both web and worker dyno types. The minimum recommended is
standard-1x, which should be sufficient for experiments that do not rely on
real-time coordination, such as Bartlett (1932), stories. Experiments that
require significant power to process websocket events should consider the higher
levels, standard-2x, performance-m and performance-l. In all but the
most intensive experiments, either dyno_type or num_dynos_web should be
increased, not both. See dyno_type_web and dyno_type_worker below
for information about more specific settings.

	dyno_type_web

	This determines how powerful the heroku web dynos are. It applies only to web dynos
and will override the default set in dyno_type. See dyno_type above for details
on specific values.

	dyno_type_worker

	This determines how powerful the heroku worker dynos are. It applies only to worker
dynos and will override the default set in dyno_type.. See dyno_type above for
details on specific values.

	redis_size

	A larger value for this increases the number of connections available on the redis dyno.
This should be increased for experiments that make substantial use of websockets. Values
are premium-0 to premium-14. It is very unlikely that values higher than premium-5
are useful.

	duration

	The duration parameter determines the number of hours that an MTurk worker has to complete
the experiment. Choosing numbers that are too short can cause people to refuse to work on
a HIT. A deadline that is too long may give people pause for thought as it may make
the task seem underpaid. Set this to be significantly above the total time from start
to finish that you’d expect a user to take in the worst case.

	base_payment

	The amount of US dollars to pay for completion of the experiment. The higher this is,
the easier it will be to attract workers.

Email Notification Setup

Dallinger can be configured to send email messages when errors occur during a
running experiment. If this configuration is skipped, messages which
would otherwise be emailed will be written to the experiment logs instead.

Instructions

Sending email from Dallinger requires 5 configuration settings, described in
turn below. Like all configuration settings, they can be set up in either
.dallingerconfig in your home directory, or in config.txt in the root
directory of your experiment.

The Config Settings

	smtp_host

	The hostname and port of the SMTP (outgoing email) server through
which all email will be sent. This defaults to smtp.gmail.com:587, the Google
SMTP server. If you want to send email from a Gmail address, or a custom
domain set up to use Gmail for email, this default setting is what you want.

	smtp_username

	The username with which to log into the SMTP server, which
will very likely be an email address (if you are using a Gmail address to send
email, you will use that address for this value).

	smtp_password

	The password associated with the smtp_username.

NOTE If you are using two-factor authentication, see Two-Factor Authentication,
below.

	dallinger_email_address

	The email address to be used as the “from” address
outgoing email notifications. For Gmail accounts, this address is likely to be
overwritten by the Google SMTP server. See Gmail “From” address rewriting below.

	contact_email_on_error

	Also an email address, and used in two ways:

	It serves as the recipient address for outgoing notifications

	It is displayed to experiment participants on the error page, so that
they can make inquiries about compensation

Pitfalls and Solutions

A few other things which may get in the way of sending email successfully, or
cause things to behave differently than expected:

Two-Factor Authentication

Having two-factor authentication enabled for the outgoing email account will
prevent Dallinger from sending email without some additional steps. Detailed
instructions are provided for Gmail, below. Other email services which support
two-factor authentication may provide equivalent solutions.

Working with Google/Gmail Two-factor Authentication

If you are using Gmail with two-factor authentication, we recommend that you set
up an application-specific password (what Google short-hands as “App password”)
specifically for Dallinger. You can set one up following these instructions
(adapted from here [https://www.lifewire.com/get-a-password-to-access-gmail-by-pop-imap-2-1171882]):

	Log into your Gmail web interface as usual, using two-factor authentication if
necessary.

	Click your name or photo near your Gmail inbox’s top right corner.

	Follow the Google Account link in the drop-down/overlay that appears.

	Click Signing in to Google in the Sign-in & security section.

	Under the Password & sign-in method section, click App passwords.
(If prompted for your Gmail password, enter it and click Next.)

	Select Other (custom name) in the Select app drop-down menu.
Enter Dallinger outgoing mail or another descriptive name so you’ll recognize
what it’s for when you view these settings in the future.

	Click Generate.

	Find and immediately copy the password under Your app passwords. Type or paste the
password into the .dallingerconfig file in your home directory.
You will not be able to view the password again, so if you miss it, you’ll
need to delete the one you just created and create a new one.

	Click Done.

Firewall/antivirus

When developing locally, antivirus or firewall software may prevent outgoing
email from being sent, and cause Dallinger to raise a socket.timeout error.
Temporarily disabling these tools is the easiest workaround.

Google “Less secure apps”

If you do not have two-factor authentication enabled, Gmail may require that
you enable “less secure apps” in order to send email from Dallinger. You will
likely know you are encountering this problem because you will receive warning
email messages from Google regarding “blocked sign-in attempts”. To enable this,
sign into Gmail, go to the Less secure apps section under Google Account,
and turn on Allow less secure apps.

Gmail “From” address rewriting

Google automatically rewrites the From line of any email you send via its SMTP
server to the default Send mail as address in your Gmail or Google Apps email
account setting. This will result in the dallinger_email_address value being
ignored, and the smtp_username appearing in the “From” header instead. A
possible workaround: in your Google email under Settings, go to the Accounts
tab/section and make “default” an account other than your Gmail/Google Apps
account. This will cause Google’s SMTP server to re-write the From field with
this address instead.

Debug Mode

Email notifications are never sent when Dallinger is running in “debug” mode.
The text of messages which would have been emailed will appear in the logging
output instead.

Running Experiments Programmatically

Dallinger experiments can be run through a high-level Python API.

import dallinger

experiment = dallinger.experiments.Bartlett1932()
data = experiment.run(
 mode="live",
 base_payment=1.00,
)

All parameters in config.txt and .dallingerconfig can be specified
in the configuration dictionary passed to the
run() function. The return
value is an object that allows you to access all the Dallinger data tables
in a variety of useful formats. The following data tables are available:

data.infos
data.networks
data.nodes
data.notifications
data.participants
data.questions
data.transformations
data.transmissions
data.vectors

For each of these tables, e.g. networks, you can access the data in a
variety of formats, including:

data.networks.csv # Comma-separated value
data.networks.dict # Python dictionary
data.networks.df # pandas DataFrame
data.networks.html # HTML table
data.networks.latex # LaTeX table
data.networks.list # Python list
data.networks.ods # OpenDocument Spreadsheet
data.networks.tsv # Tab-separated values
data.networks.xls # Legacy Excel spreadsheet
data.networks.xlsx # Modern Excel spreadsheet
data.networks.yaml # YAML

See Database API for more details about these tables.

Parameterized Experiment Runs

This high-level API is particularly useful for running an experiment in a
loop with modified configuration for each run. For example, an experimenter
could run repeated ConcentrationGame experiments with varying numbers of
participants:

import dallinger

collected = []
experiment = dallinger.experiments.ConcentrationGame()
for run_num in range(1, 10):
 data = experiment.run(
 mode="live",
 num_participants=run_num,
)
 collected.append(data)

With this technique, an experimenter can use data from prior runs to
modify the configuration for subsequent experiment runs.

Repeatability

It is often useful to share the code used to run an experiment in a way
that ensures that re-running it will retrieve the same results. Dallinger
provides a special method for that purpose: collect().
This method is similar to run() but it requires an app_id
parameter. When that app_id corresponds to existing experiment data that
can be retrieved (from either a local export or stored remotely), that data
will be loaded. Otherwise, the experiment is run and the data is
saved under the provided app_id so that subsequent calls to
collect() with that app_id will retrieve the data instead
of re-running the experiment.

For example, an experimenter could pre-generate a UUID using dallinger uuid,
then collect data using that UUID:

import dallinger

my_app_id = "68f73876-48f3-d1e2-4df7-25e46c99ce28"
experiment = dallinger.experiments.Bartlett1932()
data = experiment.collect(my_app_id,
 mode="live",
 base_payment=1.00,
)

The first run of the above code will run a live experiment and collect data.
Subsequent runs will retrieve the data collected during the first run.

Importing Your Experiment

You can use this API directly on an imported experiment class if it is
available in your python path:

from mypackage.experiment import MyFancyExperiment
data = MyFancyExperiment().run(...)

Alternatively, an experiment installed as a python package can register itself
with Dallinger and appear in the experiments module. This is done by including
a dallinger.experiments item in the entry_points argument in the call to
setup in an experiment’s setup.py. For example:

...
setup(
 ...,
 entry_points={'dallinger.experiments': ['mypackage.MyFancyExperiment']},
 ...
)

An experiment package registered in this manner can be imported from
dallinger.experiments:

import dallinger

experiment = dallinger.experiments.MyFancyExperiment()
experiment.run(...)

See the setup.py from dlgr.demos for more examples.

Monitoring a Live Experiment

There are a number of ways that you can monitor a live experiment:

Command line tools

dallinger summary --app {#id}, where {#id} is the id (w...) of
the application.

This will print a summary showing the number of participants with each
status code, as well as the overall yield:

status | count

1 | 26
101 | 80
103 | 43
104 | 2

Yield: 64.00%

Papertrail

You can use Papertrail to view and search the live logs of your
experiment. You can access the logs either through the Heroku
dashboard’s Resources panel
(https://dashboard.heroku.com/apps/{#id}/resources), where {#id} is the
id of your experiment, or directly through Papertrail.com
(https://papertrailapp.com/systems/{#id}/events).

Setting up alerts

You can set up Papertrail to send error notifications to Slack or
another communications platform.

	Take a deep breath.

	Open the Papertrail logs.

	Search for the term error.

	To the right of the search bar, you will see a button titled “+ Save
Search”. Click it. Name the search “Errors”. Then click “Save &
Setup an Alert”, which is to the right of “Save Search”.

	You will be directed to a page with a list of services that you can
use to set up an alert.

	Click, e.g., Slack.

	Choose the desired frequency of alert. We recommend the minimum, 1
minute.

	Under the heading “Slack details”, open (in a new tab or window)
the link new Papertrail
integration.

	This will bring you to a Slack page where you will choose a channel
to post to. You may need to log in.

	Select the desired channel.

	Click “Add Papertrail Integration”.

	You will be brought to a page with more information about the
integration.

	Scroll down to Step 3 to get the Webhook URL. It should look
something like
https://hooks.slack.com/services/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.

	Copy this link to your clipboard.

	Change anything else you want and then scroll to the bottom and
click “Save integration”.

	Go back to Papertrail page that you left in Step 7.

	Paste the copied URL into the input text box labeled “Integration’s
Webhook URL” under the “Slack Details” heading.

	Click “Create Alert” on the same page.

	Victory.

Experiment Data

Dallinger keeps track of experiment data using the database. All generated
data about Dallinger constructs, like networks, nodes, and participants, is
tracked by the system. In addition, experiment specific data, such as
questions and infos, can be stored.

The info table is perhaps the most useful for experiment creators. It is
intended for saving data specific to an experiment. Whenever an important
event needs to be recorded for an experiment, an Info can be created:

def record_event(self, node, contents, details):
 info = Info(origin=node, contents=contents, details=details)
 session.add(info)
 session.commit()

In the above example, we have a function to record an event that would be
part of a long experiment code. Each time something important happens in the
experiment, the function will be called. In this case, we take the related
node as the first parameter, then a string representation of the event, and
finally an optional details parameter, which can include a dictionary, or
other data structure with details.

Dallinger allows users to export experiment data for performing analysis with
the tools of their choice. Data from all experiment tables are exported in CSV
format, which makes it easy to use in a variety of tools.

To export the data, the Dallinger export command is used. The command
requires passing in the application id. Example:

$ dallinger export --app 6ab5e918-44c0-f9bc-5d97-a5ddbbddb68a

This will connect to the database and export the data, which will be saved as
a zip file inside the data directory:

$ ls data
6ab5e918-44c0-f9bc-5d97-a5ddbbddb68a.zip

To use the exported data, it is recommended that you unzip the file inside a
working directory. This will create a new data directory, which will
contain the experiment’s exported tables as CSV files:

$ unzip 6ab5e918-44c0-f9bc-5d97-a5ddbbddb68a.zip
Archive: 6ab5e918-44c0-f9bc-5d97-a5ddbbddb68a-data.zip
 inflating: experiment_id.md
 inflating: data/network.csv
 inflating: data/info.csv
 inflating: data/notification.csv
 inflating: data/question.csv
 inflating: data/transformation.csv
 inflating: data/vector.csv
 inflating: data/transmission.csv
 inflating: data/participant.csv
 inflating: data/node.csv

Once the data is uncompressed, you can analyze it using many different
applications. Excel, for example, will easily import the data, just by double
clicking on one of the files.

In Python, pandas are a popular way of manipulating data. The library is
required by Dallinger, so if you already have Dallinger running you can begin
using it right away:

$ python
>>> import pandas
>>> df = pandas.read_csv('question.csv')

Pandas has a handy read_csv method, which will read a CSV file and convert
it to a DataFrame, which is a sort of spreadsheet-like structure used by
Pandas to work with data. Once the data is in a DataFrame, we can use all the
DataFrame features to work with the data:

>>> df.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 6 entries, 0 to 5
 Data columns (total 14 columns):
 id 6 non-null int64
 creation_time 6 non-null datetime64[ns]
 property1 0 non-null object
 property2 0 non-null object
 property3 0 non-null object
 property4 0 non-null object
 property5 0 non-null object
 failed 6 non-null object
 time_of_death 0 non-null object
 type 6 non-null object
 participant_id 6 non-null int64
 number 6 non-null int64
 question 6 non-null object
 response 6 non-null object
 dtypes: datetime64[ns](1), int64(3), object(10)
 memory usage: 744.0+ bytes
 None
 >>> df.response.describe()
 count 6
 unique 5
 top {"engagement":"7","difficulty":"4"}
 freq 2
 Name: response, dtype: object

In this case, let’s say we want to analyze questionnaire responses at the end
of an experiment. We will only need the response column from the question
table. Also, since this column is stored as a string, but holds a dictionary
with the answers to the questions, we need to convert it into a suitable
format for analysis:

>>> df = pandas.read_csv('question.csv', usecols=['response'],
 converters={'response': lambda x:eval(x).values()})
>>> df
 response
 0 [4, 7]
 1 [1, 6]
 2 [4, 7]
 3 [7, 7]
 4 [3, 6]
 5 [0, 3]
>>> responses=pandas.DataFrame(df['response'].values.tolist(),
 columns=['engagement', 'difficulty'], dtype='int64')
>>> responses
 engagement difficulty
 0 4 7
 1 1 6
 2 4 7
 3 7 7
 4 3 6
 5 0 3

First we create a DataFrame using read_csv as before, but this time, we
specify which columns to use using the usecols parameter. To get the
numeric values for the responses, we use a converter to convert the string
back into a dictionary and extract the values.

At this point, we have both values in the response column. We really want to
have one column for each value, so we create a new dataframe, converting the
response values to a list and assigning each to a named column. We also make
sure the values are integers, with the dtype parameter. This makes them
plottable.

We can now make a simple bar chart of the responses using plot:

>>> responses.plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0x7f7f0092dc90>

If you are running this in a Jupyter notebook [https://jupyter.org/], this
would be the result:

[image:]

Of course these are very simple examples. Pandas are a powerful library, and
offer many analysis and visualization methods, but this should at least give
an idea of what can be achieved.

Dallinger also has a helper class that allows us to handle experiment data in
different formats. You can get the DataFrame using this, as well:

$ python
>>> from dallinger.data import Table
>>> data = Table('info.csv')
>>> df = data.df

It might seem like a roundabout way to get the DataFrame, but the table class
has the advantage that the data can easily be converted to many other
formats. All of these formats are accessed as properties of the Table
instance, like data.df above. Supported formats are:

	csv. Comma-separated values.

	dict. A python dictionary.

	df. A pandas DataFrame.

	html. An html table.

	latex. A LaTex table.

	list. A python list.

	ods. An open document spreadsheet.

	tsv. Tab separated values.

	xls. Legacy Excel spreadsheet.

	xlsx. Excel spreadsheet.

	yaml. YAML format.

From the list above dict, df, and list can be used to handle the data
inside a python interpreter or program, and the rest are better suited for
display or analysis using other tools.

Viewing the PostgreSQL Database

Mac OS X

Postico is a nice tool for examining Postgres databases on Mac OS X. We use
it to connect to live experiment databases. Here are the steps needed to
do this:

	Download Postico [https://eggerapps.at/postico/] and place it in
your Applications folder.

	Open Postico.

	Press the “New Favorite” button in the bottom left corner to access a
new database.

	Get the database credentials from the Heroku dashboard:

	Go to https://dashboard.heroku.com/apps/{app_id}/resources

	Under the Add-ons subheading, go to “Heroku Postgres ::
Database”

	Note the database credentials under the subheading “Connection
Settings”. You’ll use these in step 5.

	Fill in the database settings in Postico. You’ll need to include the:

	Host

	Port

	User

	Password

	Database

	Connect to the database.

	You may see a dialog box pop up saying that Postico cannot verify
the identity of the server. Click “Connect” to proceed.

Ubuntu

pgAdmin4 can be used to inspect the contents of the database.
Read more about it here [https://www.pgadmin.org/].

Running bots as participants

Dallinger supports running simulated experiments using bots
that participate in the experiment automatically.

Note

Not all experiments will have bots available.
The Bartlett (1932), stories demo does have bots available.

Running an experiment locally with bots

To run the experiment in debug mode using bots, use the –bot flag:

$ dallinger debug --bot

This overrides the recruiter configuration key to use the
BotRecruiter.
Instead of printing the URL for a participant or recruiting participants
using Mechanical Turk, the bot recruiter will start running bots.

You may also set the configuration value recruiter='bots' in local or global
configurations, as an environment variable or as a keyword argument to
run().

Note

Bots are run by worker processes. If the experiment recruits many bots
at the same time, you may need to increase the num_dynos_worker config setting
to run additional worker processes. Each worker process can run up to 20 bots
(though if the bots are implemented using selenium to run a real browser,
you’ll probably hit resource limits before that).

Running an experiment with a mix of bots and real participants

It’s also possible to run an experiment that mixes bot participants
with real participants. To do this, edit the experiment’s config.txt
to specify recruiter configuration like this:

recruiter = multi
recruiters = bots: 2, cli: 1

The recruiters config setting is a specification of how many
participants to recruit from which recruiters in what order. This
example says to use the bot recruiter the first 2 times that the
experiment requests a participant to be recruited, followed by
the CLI recruiter the third time. (The CLI recruiter writes the
participant’s URL to the log, which triggers opening it in your
browser if you are running in debug mode.)

To start the experiment with this configuration, run:

$ dallinger debug

Running a single bot

If you want to run a single bot as part of an ongoing experiment, you can use
the bot command. This is useful for testing a single
bot’s behavior as part of a longer-running experiment, and allows easy access
to the Python pdb debugger.

Registration on the OSF

Dallinger integrates with the Open Science Framework [https://osf.io/]
(OSF), creating a new OSF project and uploading your experiment code to the
project on launch. To enable, specify a personal access token osf_access_token
in your .dallingerconfig file. You can generate a new OSF personal access
token on the OSF settings page [https://osf.io/settings/tokens/].

Troubleshooting

A few common issues are reported when trying to run Dallinger. Always run with the –verbose flag for full logs

Python Processes Kept Alive

Sometimes when trying to run experiments consecutively in Debug mode, a straggling process creates Server 500 errors.
These are caused by background python processes and/or gunicorn workers. Filter for them using:

ps -ef | grep -E "python|gunicorn"

This will display all running processes that have the name python or gunicorn. To kill all of them, run these commands:

pkill python
pkill gunicorn

Known Postgres issues

If you get an error like the following…

createuser: could not connect to database postgres: could not connect to server:
 Is the server running locally and accepting
 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

…then you probably did not start the app.

If you get a fatal error that your ROLE does not exist, run these commands:

createuser dallinger
dropdb dallinger
createdb -O dallinger dallinger

Common Sandbox Error

❯❯ Launching the experiment on MTurk...

❯❯ Error parsing response from /launch, check web dyno logs for details: <!DOCTYPE html>
 <html>
 <head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta charset="utf-8">
 <title>Application Error</title>
 <style media="screen">
 html,body,iframe {
 margin: 0;
 padding: 0;
 }
 html,body {
 height: 100%;
 overflow: hidden;
 }
 iframe {
 width: 100%;
 height: 100%;
 border: 0;
 }
 </style>
 </head>
 <body>
 <iframe src="//www.herokucdn.com/error-pages/application-error.html"></iframe>
 </body>
 </html>
Traceback (most recent call last):
 File "/Users/user/.virtualenvs/dallinger/bin/dallinger", line 11, in <module>
 load_entry_point('dallinger', 'console_scripts', 'dallinger')()
 File "/Users/user/.virtualenvs/dallinger/lib/python3.6/site-packages/click/core.py", line 722, in __call__
 return self.main(*args, **kwargs)
 File "/Users/user/.virtualenvs/dallinger/lib/python3.6/site-packages/click/core.py", line 697, in main
 rv = self.invoke(ctx)
 File "/Users/user/.virtualenvs/dallinger/lib/python3.6/site-packages/click/core.py", line 1066, in invoke
 return _process_result(sub_ctx.command.invoke(sub_ctx))
 File "/Users/user/.virtualenvs/dallinger/lib/python3.6/site-packages/click/core.py", line 895, in invoke
 return ctx.invoke(self.callback, **ctx.params)
 File "/Users/user/.virtualenvs/dallinger/lib/python3.6/site-packages/click/core.py", line 535, in invoke
 return callback(*args, **kwargs)
 File "/Users/user/Dallinger/dallinger/command_line.py", line 558, in sandbox
 _deploy_in_mode(u'sandbox', app, verbose)
 File "/Users/user/Dallinger/dallinger/command_line.py", line 550, in _deploy_in_mode
 deploy_sandbox_shared_setup(verbose=verbose, app=app)
 File "/Users/user/Dallinger/dallinger/command_line.py", line 518, in deploy_sandbox_shared_setup
 launch_data = _handle_launch_data('{}/launch'.format(heroku_app.url))
 File "/Users/user/Dallinger/dallinger/command_line.py", line 386, in _handle_launch_data
 launch_data = launch_request.json()
 File "/Users/user/.virtualenvs/dallinger/lib/python3.6/site-packages/requests/models.py", line 892, in json
 return complexjson.loads(self.text, **kwargs)
 File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/__init__.py", line 339, in loads
 return _default_decoder.decode(s)
 File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/decoder.py", line 364, in decode
 obj, end = self.raw_decode(s, idx=_w(s, 0).end())
 File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/json/decoder.py", line 382, in raw_decode
 raise ValueError("No JSON object could be decoded")

If you get this from the sandbox, this usually means there’s a deeper issue that requires dallinger logs –app XXXXXX. Usually this could be a requirements.txt file error (missing dependency or reference to an incorrect branch).

Combining Dallinger core development and running experiments

A common pitfall while doing development on the dallinger codebase while also
working on external experiments which include dallinger as a dependency: you
pip install a demo experiment in your active virtual environment, and it
overwrites the dallinger.egg-link file in that environment’s site-packages
directory with an actual copy of the dallinger package.

When installing dallinger with the intent to work on dallinger, the recommended
way to install dallinger itself is with pip’s “editable mode”, by passing the
-e or –editable flag to pip install:

pip install -e .[data]

This creates a form of symbolic link in the active python’s site-packages
directory to the working copy of dallinger you’re sitting in. This allows you to
make changes to python files in the dallinger working copy and have them
immediately active when using dallinger commands or any other actions that
invoke the active python interpreter.

Running pip install without the -e flag, either while installing dallinger
directly, or while installing a separate experiment which includes dallinger as
a dependency, will instead place a copy of the dallinger package in the
site-packages directory. These files will then be executed when the active
python is running, and any changes to the files you’re working on will be
ignored.

You can check to see if you are working in “editable mode” by inspecting the
contents of your active virtual environment’s site-packages folder. In
“editable mode”, you will see a dallinger.egg-link file listed in the directory:

...
drwxr-xr-x 9 jesses staff 306B May 29 12:30 coverage_pth-0.0.2.dist-info
-rw-r--r-- 1 jesses staff 44B May 29 12:30 coverage_pth.pth
-rw-r--r-- 1 jesses staff 33B Jun 14 16:08 dallinger.egg-link
drwxr-xr-x 21 jesses staff 714B Mar 19 17:24 datashape
drwxr-xr-x 10 jesses staff 340B Mar 19 17:24 datashape-0.5.2.dist-info
...

The contents of this file will include the path to the working copy that’s
active. If you instead see a directory tree with actual dallinger files, you can
restore “editable mode” by re-running the installation steps for dallinger from
the Developer Installation documentation.

Dallinger Demos

The demos can be run locally on your machine in “debug” mode.
Running the demos in “sandbox” mode will require a Heroku account.

More information for running in “sandbox” mode.

Demos

	Bartlett (1932), stories

	Networked chatroom

	Concentration

	Transmitting functions

	Bartlett (1932), drawings

	Markov Chain Monte Carlo with People

	Rogers’ Paradox

	The Sheep Market

	Snake

	2048

	Vox Populi (Wisdom of the crowd)

Bartlett (1932), stories

Frederic Bartlett’s 1932 book Remembering documents early experiments
that explore how using and transmitting a memory can affect the memory’s
contents. Bartlett wanted to understand how culture shapes memory.
Inspired by Philippe (1897), he performed a series of experiments that
asked participants to repeatedly recall a memory or to pass it down a
chain of people, from one to the next. Bartlett showed that the process
of reproduction alters memories over time, causing them to take on
features from an individual’s culture. More generally, the methods he
developed expose cumulative effects of the forces that reshape and
degrade memories and how they impact the structure and veracity of what
we remember.

Bartlett, F. C. (1932). Remembering. Cambridge: Cambridge University
Press.

In this demo, a story is passed down a chain.

Download the demo.

Networked chatroom

This is a networked chatroom where players broadcast messages to each
other.

Note that this demo has an additional dependency on the nltk
library.

You will need to run: pip install -r requirements.txt from the
experiment directory before running the demo.

Download the demo.

Concentration

The objective of Concentration is to flip and match all the turned-down
cards in as few moves as possible.

[image: Screenshot of an in-progress Concentration game]
Screenshot of an in-progress Concentration game

Download the demo.

Transmitting functions

Culturally transmitted knowledge changes as it is transmitted from
person to person. Some of the most striking instances of this process
come from cases of language acquisition. For example, in Nicaragua, a
community of deaf children transformed a fragmentary pidgin into a
language with rich grammatical structure by learning from each other
(Kegl and Iwata, 1989; Senghas and Coppola, 2001). Languages, legends,
and social norms are all shaped by the processes of cultural
transmission (Cavalli-Sforza, 1981; Boyd and Richerson, 1988; Kirby,
1999, 2001; Briscoe, 2002).

Laboratory studies of cultural transmission often use the method of
“iterated learning”, which has roots in Bartlett’s
experiments. In the iterated learning
paradigm, information is passed along a chain of individuals, from one
to the next, much like in the children’s game Telephone. Iterated
learning paradigms for the transmission of language and other forms of
knowledge have been developed, too (Kalish et al., 2007; Griffiths and
Kalish, 2007; Griffiths et al., 2008a). For example, in one study,
participants learned the relationship between two continuous variables
(“function learning”) and were tested on what they had discovered
(Kalish et al., 2007). Responses on the test were then used to train the
next participant in the chain. Kalish et al. (2007) found that, over
time, knowledge transmitted through the chain reverts to the prior
beliefs of the individual learners.

Kalish, M. L., Griffiths, T. L., & Lewandowsky, S. (2007). Iterated
learning: Intergenerational knowledge transmission reveals inductive
biases. Psychonomic Bulletin and Review, 14, 288-294.

Download the demo.

Bartlett (1932), drawings

Frederic Bartlett’s 1932 book Remembering documents early experiments
that explore how using and transmitting a memory can affect the memory’s
contents. Bartlett wanted to understand how culture shapes memory.
Inspired by Philippe (1897), he performed a series of experiments that
asked participants to repeatedly recall a memory or to pass it down a
chain of people, from one to the next. Bartlett showed that the process
of reproduction alters memories over time, causing them to take on
features from an individual’s culture. More generally, the methods he
developed expose cumulative effects of the forces that reshape and
degrade memories and how they impact the structure and veracity of what
we remember.

[image: Bartlett's drawing experiment]
Bartlett’s drawing experiment

Bartlett, F. C. (1932). Remembering. Cambridge: Cambridge University
Press.

In this demo, a drawing is passed down a chain.

Download the demo.

Markov Chain Monte Carlo with People

Markov Chain Monte Carlo with People (MCMCP) is a method for uncovering
mental representations that exploits an equivalence between a model of
human choice behavior and an element of an MCMC algorithm. This demo
replicates Experiment 3 of Sanborn, Griffiths, & Shiffrin (2010), which
applies MCMCP to four natural categories, providing estimates of the
distributions over animal shapes that people associate with giraffes,
horses, cats, and dogs.

Sanborn, A. N., Griffiths, T. L., & Shiffrin, R. M. (2010). Uncovering
mental representations with Markov chain Monte Carlo. Cognitive
Psychology, 60(2), 63-106.

Download the demo.

Rogers’ Paradox

This experiment, which demonstrates Rogers paradox, explores the
evolution of asocial learning and unguided social learning in the
context of a numerical discrimination task.

Configuration

The experiment parameters can be configured using Dallinger
configuration
files [https://dallinger.readthedocs.io/en/latest/configuration.html].
In addition to the built-in Dallinger configuration parameters, the
Rogers’ experiment supports the following additional configuration
parameters:

	experiment_repeats: An integer defining the number of experiment
rounds each participant will see. defaults to ``0``

	practice_repeats: An integer defining the number of practice
rounds each participant will see before starting the experiment.
defaults to ``10``

	catch_repeats: An integer defining the number of experiment
rounds which are intended to “catch” participant inattention. These
rounds should have a much lower difficulty than the actual experiment
rounds. defaults to ``0``

	practice_difficulty: A number between 0.5 and 1.0 indicating the
relative difficulty of the practice rounds (i.e. what proportion of
the 80 dots are of the majority color, 0.5=hardest, 1.0=easiest).
defaults to ``0.8``

	catch_difficulty: A number between 0.5 and 1.0 indicating the
relative difficulty of the “catch” rounds (i.e. what proportion of
the 80 dots are of the majority color, 0.5=hardest, 1.0=easiest).
defaults to ``0.8``

	difficulties: A string of comma separated numbers between 0.5 and
1.0 defining a range of relative difficulties for the normal
experiment rounds (i.e. what proportions of the 80 dots are of the
majority color, 0.5=hardest, 1.0=easiest). defaults to
``‘0.525, 0.5625, 0.65’``

	min_acceptable_performance: A number between 0.0 and 1.0 defining
the proportion of “catch” rounds that need to be correctly chosen for
the particpation to be considered successful. defaults to ``0.833``

	generations: An integer describing how many “generations” of
participants to recruit over the course of the experiment. defaults
to ``4``

	generation_size: An integer describing how many participants to
recruit in each “generation”. defaults to ``4``

	bonus_payment: A number defining the maximum bonus payment for
successful participation in dollars. defaults to ``1.0``

Download the demo.

The Sheep Market

“The Sheep Market is a collection of 10,000 sheep created by workers on
Amazon’s Mechanical Turk. Each worker was paid $.02 (US) to “draw a
sheep facing left.”

http://www.aaronkoblin.com/project/the-sheep-market/

Download the demo.

Snake

This is the video game
Snake [https://en.m.wikipedia.org/wiki/Snake_(video_game)], in which
the player maneuvers a line which grows in length within the bounds of a
box, with the line itself being a primary obstacle.

Download the demo.

2048

2048 is a sliding-block puzzle game by the Italian web developer
Gabriele Cirulli. The goal is to slide numbered tiles on a grid,
combining them to create a tile with a value of 2048.

[image: Screenshot of an in-progress 2048 game]
Screenshot of an in-progress 2048 game

Download the demo.

Vox Populi (Wisdom of the crowd)

https://en.wikipedia.org/wiki/Wisdom_of_the_crowd

Download the demo.

Developer Installation

Dallinger is tested with Ubuntu 18.04 LTS, 16.04 LTS, 14.04 LTS and Mac OS X locally.
If you are attempting to use Dallinger on Microsoft Windows, running Ubuntu in a virtual machine is the recommend method.

If you are interested in using Dallinger with Docker, read more here.

Mac OS X

Install Python

Dallinger is written in the language Python. For it to work, you will need
to have Python 2.7 installed, or alternatively Python 3.6 or higher. Python 3 is the preferred option.
You can check what version of Python you have by running:

python --version

Note

You will also need to have pip [https://pip.pypa.io/en/stable] installed. It is included in some of the later versions of Python 3, but not all. (pip is a package manager for Python packages, or modules if you like.) If you are using Python 3, you may find that you may need to use the pip3 command instead of pip where applicable in the instructions that follow.

Using Homebrew will install the latest version of Python and pip by default.

brew install python

This will install the latest Python3 and pip3.

You can also use the preinstalled Python in Mac OS X, currently Python 2.7 as of writing.

If you installed Python 3 with Homebrew, you should now be able to run the python3 command from the terminal.
If the command cannot be found, check the Homebrew installation log to see
if there were any errors. Sometimes there are problems symlinking Python 3 to
the python3 command. If this is the case for you, look here [https://stackoverflow.com/questions/27784545/brew-error-could-not-symlink-path-is-not-writable] for clues to assist you.

With the preinstalled Python in Mac OS X, you will need to install pip yourself. You can use:

sudo easy_install pip

Should that not work for whatever reason, you can search here [https://docs.python-guide.org/] for more clues.

Install Postgresql

On Mac OS X, we recommend installing using Homebrew:

brew install postgresql

Postgresql can then be started and stopped using:

brew services start postgresql
brew services stop postgresql

Create the databases

After installing Postgres, you will need to create two databases:
one for your experiments to use, and a second to support importing saved
experiments. It is recommended that you also create a database user.

Naviagate to a terminal and type:

createuser -P dallinger --createdb
(Password: dallinger)
createdb -O dallinger dallinger
createdb -O dallinger dallinger-import

The first command will create a user named dallinger and prompt you for a
password. The second and third command will create the dallinger and
dallinger-import databases, setting the newly created user as the owner.

You can optionally inspect your databases by entering psql dallinger.
Inside psql you can use commands to see the roles and database tables:

\du
\l

To quit:

\q

If you get an error like the following:

createuser: could not connect to database postgres: could not connect to server:
 Is the server running locally and accepting
 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

then postgres is not running. Start postgres as described in the Install Postgresql section above.

Install Heroku

To run experiments locally or on the internet, you will need the Heroku Command
Line Interface installed, version 3.28.0 or better. If you want to launch experiments on the internet, then
you will also need a Heroku.com account, however this is not needed for local debugging.

To check which version of the Heroku CLI you have installed, run:

heroku --version

To install:

brew install heroku/brew/heroku

More information on the Heroku CLI is available at heroku.com [https://devcenter.heroku.com/articles/heroku-cli] along with alternative installation instructions, if needed.

Install Redis

Debugging experiments requires you to have Redis installed and the Redis
server running.

brew install redis

Start Redis on Mac OS X with:

brew services start redis

You can find more details and other installation instructions at redis.com [https://redis.io/topics/quickstart].

Install Git

Dallinger uses Git, a distributed version control system, for version control of its code.
If you do not have it installed, you can install it as follows:

brew install git

You will need to configure your Git name and email:

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

Replace you@example.com and Your Name with your email and name to set your account’s default identity.
Omit –global to set the identity only in this repository. You can read more about configuring Git here [https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup/].

Set up a virtual environment

Why use virtualenv?

Virtualenv solves a very specific problem: it allows multiple Python projects
that have different (and often conflicting) requirements, to coexist on the same computer.
If you want to understand this in detail, you can read more about it here [https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/].

Now let’s set up a virtual environment by running the following commands:

If using Python 2.7 and pip:

pip install virtualenv
pip install virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
mkdir -p $WORKON_HOME
export VIRTUALENVWRAPPER_PYTHON=$(which python)
source $(which virtualenvwrapper.sh)

If using Python 3.x and pip3 (Python 3.7 in this example):

pip3 install virtualenv
pip3 install virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
mkdir -p $WORKON_HOME
export VIRTUALENVWRAPPER_PYTHON=$(which python3.7)
source $(which virtualenvwrapper.sh)

Now create the virtual environment using:

mkvirtualenv dlgr_env --python <specify_your_python_path_here>

Examples:

Using homebrew installed Python 3.7:

mkvirtualenv dlgr_env --python /usr/local/bin/python3.7

Using Python 2.7:

mkvirtualenv dlgr_env --python /usr/bin/python

Virtualenvwrapper provides an easy way to switch between virtual environments
by simply typing: workon [virtual environment name].

The technical details:

These commands use pip/pip3, the Python package manager, to install two
packages virtualenv and virtualenvwrapper. They set up an
environmental variable named WORKON_HOME with a string that gives a
path to a subfolder of your home directory (~) called Envs,
which the next command (mkdir) then makes according to the path
described in $WORKON_HOME (recursively, due to the -p flag).
That is where your environments will be stored. The source command
will run the command that follows, which in this case locates the
virtualenvwrapper.sh shell script, the contents of which are beyond
the scope of this setup tutorial. If you want to know what it does, a
more in depth description can be found on the documentation site for virtualenvwrapper [http://virtualenvwrapper.readthedocs.io/en/latest/install.html#python-interpreter-virtualenv-and-path].

Finally, the mkvirtualenv makes your first virtual environment which
you’ve named dlgr_env. We have explicitly passed it the location of the Python
that the virtualenv should use. This Python has been mapped to the python
command inside the virtual environment.

The how-to:

In the future, you can work on your virtual environment by running:
Python 2.7

export VIRTUALENVWRAPPER_PYTHON=$(which python)
source $(which virtualenvwrapper.sh)
workon dlgr_env

Python 3.x

export VIRTUALENVWRAPPER_PYTHON=$(which python3.7)
source $(which virtualenvwrapper.sh)
workon dlgr_env

NB: To stop working in the virtual environment, run deactivate. To
list all available virtual environments, run workon with no
arguments.

If you plan to do a lot of work with Dallinger, you can make your shell
execute the virtualenvwrapper.sh script everytime you open a terminal. To
do that type:

Python 2.7

echo "export VIRTUALENVWRAPPER_PYTHON=$(which python)" >> ~/.bash_profile
echo "source $(which virtualenvwrapper.sh)" >> ~/.bash_profile

Python 3.x

echo "export VIRTUALENVWRAPPER_PYTHON=$(which python3.7)" >> ~/.bash_profile
echo "source $(which virtualenvwrapper.sh)" >> ~/.bash_profile

From then on, you only need to use the workon command before starting.

Install prerequisites for building documentation

To be able to build the documentation, you will need yarn.

Please follow the instructions here [https://yarnpkg.com/lang/en/docs/install] to install it.

Install Dallinger

Next, navigate to the directory where you want to house your development
work on Dallinger. Once there, clone the Git repository using:

git clone https://github.com/Dallinger/Dallinger

This will create a directory called Dallinger in your current
directory.

Change into your the new directory and make sure you are still in your
virtual environment before installing the dependencies. If you want to
be extra careful, run the command workon dlgr_env, which will ensure
that you are in the right virtual environment.

cd Dallinger

Now we need to install the dependencies using pip:

pip install -r dev-requirements.txt

Next, install the Dallinger development directory as an editable package, and include the data “extra”:

pip install --editable .[data]

Test that your installation works by running:

dallinger --version

Install the Git pre-commit hook

With the virtual environment still activated:

pip install pre-commit

This will install the pre-commit package into the virtual environment. With that
in place, each git clone of Dallinger you create will need to have the pre-commit
hook installed with:

pre-commit install

This will install a pre-commit hook to check for flake8 violations, and enforce
a standard Python source code format via black [https://black.readthedocs.io/en/stable/]. You can run the black code
formatter and flake8 checks manually at any time by running:

pre-commit run --all-files

You may also want to install a black plugin for your own code editor, though this is not strictly necessary, since the pre-commit hook will run black for you on commit.

Install the dlgr.demos sub-package

Both the test suite and the included demo experiments require installing the
dlgr.demos sub-package in order to run. Install this in “develop mode”
with the -e option, so that any changes you make to a demo will be
immediately reflected on your next test or debug session.

From the root Dallinger directory you created in the previous step, run the
installation command:

pip install -e demos

Next, you’ll need access keys for AWS, Heroku,
etc..

Ubuntu

Install Python

Dallinger is written in the language Python. For it to work, you will need
to have Python 2.7 installed, or alternatively Python 3.6 or higher. Python 3 is the preferred option.
You can check what version of Python you have by running:

python --version

Ubuntu 18.04 LTS ships with Python 3.6.

Ubuntu 16.04 LTS ships with Python 3.5, while Ubuntu 14.04 LTS ships with Python 3.4. In case you are using one of these distributions of Ubuntu, you can use
dallinger with Python 2.7 or upgrade to the latest Python 3.x on your own.

(All three of these Ubuntu versions also provide a version of Python 2.7)

If you do not have Python 3 installed, you can install it from the
Python website [https://www.python.org/downloads/].

Also make sure you have the python headers installed. The python-dev package
contains the header files you need to build Python extensions appropriate to the Python version you will be using.

Note

You will also need to have pip [https://pip.pypa.io/en/stable] installed. It is included in some of the later versions of Python 3, but not all. (pip is a package manager for Python packages, or modules if you like.) If you are using Python 3, you may find that you may need to use the pip3 command instead of pip where applicable in the instructions that follow.

If using Python 2.7.x:

sudo apt-get install python-dev
sudo apt install -y python-pip

If using Python 3.x:

sudo apt-get install python3-dev
sudo apt install -y python3-pip

Install Postgresql

The lowest version of Postgresql that Dallinger v5 supports is 9.4.

This is fine for Ubuntu 18.04 LTS and 16.04 LTS as they
ship with Postgresql 10.4 and 9.5 respectively, however Ubuntu 14.04 LTS ships with Postgresql 9.3

Postgres can be installed using the following instructions:

Ubuntu 18.04 LTS or Ubuntu 16.04 LTS:

sudo apt-get update && sudo apt-get install -y postgresql postgresql-contrib

To run postgres, use the following command:

sudo service postgresql start

Ubuntu 14.04 LTS:

Create the file /etc/apt/sources.list.d/pgdg.list and add a line for the repository:

sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/ `lsb_release -cs`-pgdg main" >> /etc/apt/sources.list.d/pgdg.list'

Import the repository signing key, update the package lists and install postgresql:

wget -q https://www.postgresql.org/media/keys/ACCC4CF8.asc -O - | sudo apt-key add -
sudo apt-get update && sudo apt-get install -y postgresql postgresql-contrib

To run postgres, use the following command:

sudo service postgresql start

Create the databases

Make sure that postgres is running. Switch to the postgres user:

sudo -u postgres -i

Run the following commands:

createuser -P dallinger --createdb
(Password: dallinger)
createdb -O dallinger dallinger
createdb -O dallinger dallinger-import
exit

The second command will create a user named dallinger and prompt you for a
password. The third and fourth commands will create the dallinger and dallinger-import databases, setting
the newly created user as the owner.

Finally restart postgresql:

sudo service postgresql reload

Install Heroku

To run experiments locally or on the internet, you will need the Heroku Command
Line Interface installed, version 3.28.0 or better. If you want to launch experiments on the internet, then
you will also need a Heroku.com account, however this is not needed for local debugging.

To check which version of the Heroku CLI you have installed, run:

heroku --version

To install:

sudo apt-get install curl
curl https://cli-assets.heroku.com/install.sh | sh

More information on the Heroku CLI is available at heroku.com [https://devcenter.heroku.com/articles/heroku-cli] along with alternative installation instructions, if needed.

Install Redis

Debugging experiments requires you to have Redis installed and the Redis
server running.

sudo apt-get install -y redis-server

Start Redis on Ubuntu with:

sudo service redis-server start

You can find more details and other installation instructions at redis.com [https://redis.io/topics/quickstart].

Install Git

Dallinger uses Git, a distributed version control system, for version control of its code.
If you do not have it installed, you can install it as follows:

sudo apt install git

You will need to configure your Git name and email:

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

Replace you@example.com and Your Name with your email and name to set your account’s default identity.
Omit –global to set the identity only in this repository. You can read more about configuring Git here [https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup/].

Set up a virtual environment

Why use virtualenv?

Virtualenv solves a very specific problem: it allows multiple Python projects
that have different (and often conflicting) requirements, to coexist on the same computer.
If you want to understand this in detail, you can read more about it here [https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/].

Now let’s set up a virtual environment by running the following commands:

If using Python 2.7 and pip:

sudo pip install virtualenv
sudo pip install virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
mkdir -p $WORKON_HOME
source /usr/share/virtualenvwrapper/virtualenvwrapper.sh

Note

If the last line failed with “No such file or directory”. Try using source /usr/local/bin/virtualenvwrapper.sh instead. Pip installs virtualenvwrapper.sh to different locations depending on the Ubuntu version.

If using Python 3.x and pip3:

sudo pip3 install virtualenv
sudo pip3 install virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
mkdir -p $WORKON_HOME
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
source /usr/local/bin/virtualenvwrapper.sh

Now create the virtualenv using the mkvirtualenv command as follows:

If you are using Python 3 that is part of your Ubuntu installation (Ubuntu 18.04):

mkvirtualenv dlgr_env --python /usr/bin/python3

If you are using Python 2 that is part of your Ubuntu installation:

mkvirtualenv dlgr_env --python /usr/bin/python

If you are using another Python version
(eg. custom installed Python 3.x on Ubuntu 16.04 or Ubuntu 14.04):

mkvirtualenv dlgr_env --python <specify_your_python_path_here>

Virtualenvwrapper provides an easy way to switch between virtual environments
by simply typing: workon [virtual environment name].

The technical details:

These commands use pip, the Python package manager, to install two
packages virtualenv and virtualenvwrapper. They set up an
environmental variable named WORKON_HOME with a string that gives a
path to a subfolder of your home directory (~) called Envs,
which the next command (mkdir) then makes according to the path
described in $WORKON_HOME (recursively, due to the -p flag).
That is where your environments will be stored. The source command
will run the command that follows, which in this case locates the
virtualenvwrapper.sh shell script, the contents of which are beyond
the scope of this setup tutorial. If you want to know what it does, a
more in depth description can be found on the documentation site for virtualenvwrapper [http://virtualenvwrapper.readthedocs.io/en/latest/install.html#python-interpreter-virtualenv-and-path].

Finally, the mkvirtualenv makes your first virtual environment which
you’ve named dlgr_env. We have explicitly passed it the location of the Python
that the virtualenv should use. This Python has been mapped to the python
command inside the virtual environment.

The how-to:

In the future, you can work on your virtual environment by running:
If using Python 2.7 and pip:

source /usr/share/virtualenvwrapper/virtualenvwrapper.sh
workon dlgr_env

If using Python 3.x and pip3:

source /usr/local/bin/virtualenvwrapper.sh
workon dlgr_env

NB: To stop working in the virtual environment, run deactivate. To
list all available virtual environments, run workon with no
arguments.

If you plan to do a lot of work with Dallinger, you can make your shell
execute the virtualenvwrapper.sh script everytime you open a terminal. To
do that:

If using Python 2.7 and pip:

echo "source /usr/share/virtualenvwrapper/virtualenvwrapper.sh" >> ~/.bashrc

If using Python 3.x and pip3:

echo "source /usr/local/bin/virtualenvwrapper.sh" >> ~/.bashrc

From then on, you only need to use the workon command before starting.

Install prerequisites for building documentation

To be able to build the documentation, you will need yarn.

Please follow the instructions here [https://yarnpkg.com/lang/en/docs/install] to install it.

Install Dallinger

Next, navigate to the directory where you want to house your development
work on Dallinger. Once there, clone the Git repository using:

git clone https://github.com/Dallinger/Dallinger

This will create a directory called Dallinger in your current
directory.

Change into your the new directory and make sure you are still in your
virtual environment before installing the dependencies. If you want to
be extra careful, run the command workon dlgr_env, which will ensure
that you are in the right virtual environment.

cd Dallinger

Now we need to install the dependencies using pip:

pip install -r dev-requirements.txt

Next, install the Dallinger development directory as an editable package, and include the data “extra”:

pip install --editable .[data]

Test that your installation works by running:

dallinger --version

Install the Git pre-commit hook

With the virtual environment still activated:

pip install pre-commit

This will install the pre-commit package into the virtual environment. With that
in place, each git clone of Dallinger you create will need to have the pre-commit
hook installed with:

pre-commit install

This will install a pre-commit hook to check for flake8 violations, and enforce
a standard Python source code format via black [https://black.readthedocs.io/en/stable/]. You can run the black code
formatter and flake8 checks manually at any time by running:

pre-commit run --all-files

You may also want to install a black plugin for your own code editor, though this is not strictly necessary, since the pre-commit hook will run black for you on commit.

Install the dlgr.demos sub-package

Both the test suite and the included demo experiments require installing the
dlgr.demos sub-package in order to run. Install this in “develop mode”
with the -e option, so that any changes you make to a demo will be
immediately reflected on your next test or debug session.

From the root Dallinger directory you created in the previous step, run the
installation command:

pip install -e demos

Next, you’ll need access keys for AWS, Heroku,
etc..

Creating an Experiment

The easiest way to create an experiment is to use the Dallinger
Cookiecutter template.
Cookiecutter [https://cookiecutter.readthedocs.io/en/latest/] is a
tool that creates projects from project templates. There is a
Dallinger template available for this tool.

The first step is to get Cookiecutter itself installed. Like
Dallinger, Cookiecutter uses Python, so it can be installed in the same
way that Dallinger was installed. If you haven’t installed Dallinger yet,
please consult the
installation instructions first.

In most cases, you can install Cookiecutter using Python’s pip
installer:

pip install cookiecutter

After that, you can use the cookiecutter command to create a new
experiment in your current directory:

cookiecutter https://github.com/Dallinger/cookiecutter-dallinger.git

Cookiecutter works by asking some questions about the project you are
going to create, and uses that information to set up a directory
structure that contains your project. A Dallinger experiment is a
Python package, so you’ll need to answer a few questions about this
before Cookiecutter creates your experiment’s directory.

The questions are below. Be sure to follow indications about allowed
characters, or your experiment may not run:

	namespace: This can be used as a general “container” or “brand” name
for your experiments. It should be all lower case and not contain any spaces
or special characters other than _.

	experiment_name: The experiment will be stored in this sub-directory.
This should be all lower case and not contain any spaces or special
characters other than _.

	repo_name: The GitHub repository name where experiment package will
eventually live. This should not contain any spaces or special characters
other than - and _.

	package_name: The python package name for your experiment. This is
usually the name of your namespace and your experiment name separated by a
dot. This should be all lower case and not contain any spaces or special
characters other than _.

	experiment_class: The python class name for your custom experiment
class. This should not contain any spaces or special characters. This is
where the main code of your experiment will live.

	experiment_description: A short description of your experiment

	author: The package author’s full name

	author_email: The contact email for the experiment author.

	author_github: The GitHub account name where the package will eventually
live.

If you do not intend to publish your experiment and do not plan to store
it in a github repository, you can just hit <enter> when you get to
those questions. The defaults should be fine. Just make sure to have an
original answer for the experiment_name question, and you should be
good to go.

A sample Cookiecutter session is shown below. Note that the questions
begin right after Cookiecutter downloads the project repository:

$ cookiecutter https://github.com/Dallinger/cookiecutter-dallinger.git
Cloning into 'cookiecutter-dallinger'...
remote: Counting objects: 150, done.
remote: Compressing objects: 100% (17/17), done.
remote: Total 150 (delta 8), reused 17 (delta 6), pack-reused 126
Receiving objects: 100% (150/150), 133.18 KiB | 297.00 KiB/s, done.
Resolving deltas: 100% (54/54), done.
namespace [dlgr_contrib]: myexperiments
experiment_name [testexperiment]: pushbutton
repo_name [myexperiments.pushbutton]:
package_name [myexperiments.pushbutton]:
experiment_class [TestExperiment]: PushButton
experiment_description [A simple Dallinger experiment.]: An experiment where the user has to press a button
author [Jordan Suchow]: John Smith
author_github [suchow]: jsmith
author_email [suchow@berkeley.edu]: jsmith@smith.net

Once you are finished with those questions, Cookiecutter will create a
directory structure containing a basic experiment which you can then
modify to create your own. In the case of the example above, that
directory will be named myexperiments.pushbutton.

When you clone the cookiecutter template from a GitHub repository, as we did
here, cookiecutter saves the downloaded template inside your home directory,
in the .cookiecutter sub-directory. The next time you run it, cookiecutter
can use the stored template, or you can update it to the latest version. The
default behavior is to ask you what you want to do. If you see a question
like the following, just press <enter> to get the latest version:

You've downloaded /home/jsmith/.cookiecutters/cookiecutter-dallinger
before. Is it okay to delete and re-download it? [yes]:

If you answer no, cookiecutter will use the saved version. This can be
useful if you are working off-line and need to start a project.

The template creates a runnable experiment, so you could change into
the newly created directory right away and install your package:

$ cd myexperiments.pushbutton
$ pip install -e .

This command will allow you to run the experiment using Dallinger. You
just need to change to the directory named for your experiment:

$ cd myexperiments/pushbutton
$ dallinger debug

This is enough to run the experiment, but to actually begin developing
your experiment, you’ll need to install the development requirements,
like this:

$ pip install -r dev-requirements.txt

Make sure you run this command from the initial directory created by
Cookiecutter. In this case the directory is myexperiments.pushbutton.

The Experiment Package

There are several files and directories that are created with the
cookiecutter command. Let’s start with a general overview before
going into each file in detail.

The directory structure of the package is the following:

- myexperiments.pushbutton
 - myexperiments
 - pushbutton
 - static
 - css
 - images
 - scripts
 - templates
 - tests
 - docs
 - source
 - _static
 - _templates
 - licenses

myexperiments.pushbutton

The main package directory contains files required to define the
experiment as a Python package. Other than adding requirements and
keeping the README up to date, you probably won’t need to touch these
files a lot after initial setup.

myexperiments.pushbutton/myexperiments

This is what is know in Python as a namespace directory. Its only
purpose is marking itself as a container of several packages under a
common name. The idea is that using a namespace, you can have many
related but independent packages under one name, but you don’t need to
have all of them inside a single project.

myexperiments.pushbutton/myexperiments/pushbutton

Contains the code and resources (images, styles, scripts) for your
experiment. This is where your main work will be performed.

myexperiments.pushbutton/tests

This is where the automated tests for your experiment go.

myexperiments.pushbutton/docs

The files stored here are the source files for your experiment’s
documentation. Dallinger uses Sphinx [http://www.sphinx-doc.org/]
for documenting the project, and it’s recommended that you use the
same system for documenting your experiment.

myexperiments.pushbutton/licenses

This directory contains the experiment’s license for distribution.
Dallinger uses the MIT [https://opensource.org/licenses/MIT]
license, and it’s encouraged, but not required, that you use the same.

Detailed Description for Support Files

Now that you are familiar with the main project structure, let’s go
over the details for the most important files in the package. Once
you know what each file is for, you will be ready to begin developing
your experiment. In this section we’ll deal with the support files,
which include tests, documentation and Python packaging files.

myexperiments.pushbutton/setup.py

This is a Python file that contains the package information, which is
used by Python to setup the package, but also to publish it to the
Python Package Repository (PYPI) [https://pypi.python.org]. Most of
the questions you answered when creating the package with Cookiecutter
are used here. As you develop your experiment, you might need to update
the version variable defined here, which starts as “0.1.0”. You may also
wish to edit the keywords and classifiers, to help with your package’s
classification. Other than that, the file can be left untouched.

myexperiments.pushbutton/constraints.txt

This text file contains the minimal version requirements for some of the
Python dependencies used by the experiment. Out of the box, this includes
Dallinger and development support packages. If you add any dependencies to
your experiment, it would be a good idea to enter the package version here,
to avoid any surprises down the line.

myexperiments.pushbutton/requirements.txt

The Python packages required by your experiment should be listed here. Do
not include versions, just the package name. Versions are handled in
constraints.txt, discussed above. The file looks like this:

-c constraints.txt
dallinger
requests

The first line is what tells the installer which versions to use, and then
the dependencies go below, one on each line by itself. The experiment
template includes just two dependencies, dallinger and requests.

myexperiments.pushbutton/dev-requirements.txt

Similar to requirements.txt above, but contains the development
dependencies. You should only change this if you add a development
specific tool to your package. The format is the same as for the other
requirements.

myexperiments.pushbutton/README.md

This is where the name and purpose of your experiment are explained,
along with minimal installation instructions. More detailed documentation
should go in the docs directory.

Other files in myexperiments.pushbutton

There are a few more files in the myexperiments.pushbutton directory.
Here is a quick description of each:

	.gitignore. Used by git to keep track of which files to ignore
when looking for changes in your project. Files ignored by git will
also be ignored both when deploying your experiment, and when testing it
in debug mode.

	.travis.yml. Travis is a continuous integration service, which can
run your experiment’s tests each time you push some changes. This is
the configuration file where this is set up.

	CHANGELOG.md. This is where you should keep track of changes to your
experiment. It is appended to README.md to form your experiment’s
basic description.

	CONTRIBUTING.md. Guidelines for collaborating with your project.

	MANIFEST.in. Used by the installer to determine which files and
directories to include in uploads of your package.

	setup.cfg. Used by the installer to define metadata and settings for
some development extensions.

	tox.ini. Sets up the testing environment.

myexperiments.pushbutton/test/test_pushbutton.py

This is a sample test suite for your experiment. It’s intended only as a
placeholder, and does not actually test anything as it is. See the
documentation for pytest [https://docs.pytest.org/en/latest/] for
information about setting up tests.

To run the tests as they are, and once you start adding your own, use
the pytest command. Make sure you install dev-requirements.txt
before running the tests, then enter this command from the directory that
was created when you initially ran the cookiecutter command.

$ pytest
===================== test session starts ===============================
platform linux2 -- Python 2.7.15rc1, pytest-3.7.1, py-1.5.4, pluggy-0.7.1
rootdir: /home/jsmith/myexperiments.pushbutton, inifile:
collected 1 item

test/test_pushbutton.py . [100%]

======================= 1 passed in 0.08 seconds ========================

myexperiments.pushbutton/docs/Makefile

The Sphinx documentation system uses this file to execute documentation
building commands. Most of the time you will be building HTML
documentation, for which you would use the following command:

$ make html

Make sure that you are in the docs directory and that the
development requirements have been installed before running this.

The development requirements include an Sphinx plugin for checking
the spelling of your documentation. This can be very useful:

$ make spelling

The docs directory also includes makefile.bat, which does the same
tasks on Microsoft Windows systems.

myexperiments.pushbutton/docs/source/index.rst

This is where your main documentation will be written. Be sure to
read the Sphinx documentation [http://www.sphinx-doc.org/] first,
in particular the reStructuredText Primer [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html].

myexperiments.pushbutton/docs/source/spelling_wordlist.txt

This file contains a list of words that you want the spell checker
to recognize as valid. There might be some terms related to your
experiment which are not common words but should not trigger a
spelling error. Add them here.

Other files and directories in myexperiments.pushbutton/docs/source

There are a few more files in the documentation directory. Here’s a
brief explanation of each:

	acknowledgments.rst. A place for thanking any institutions or
individuals that may have helped with the experiment. Can be used
as an example of how to add new pages to your docs and link them
to the table of contents (see the link in index.rst).

	conf.py. Python configuration for Sphinx. You don’t need to
touch this unless you start experimenting with plugins and
documentation themes.

	_static. Static resources for the theme.

	_templates. Layout templates for the theme.

Experiment Code in Detail

As we reviewed in the previous section, there are lots of files which
make your experiment distributable as a Python package. Of course, the
most important part of the experiment template is the actual experiment
code, which is where most of your work will take place. In this section,
we describe each and every file in the experiment directory.

myexperiments.pushbutton/myexperiments/pushbutton/__init__.py

This is an empty file that marks your experiment’s directory as a
Python module. Though some developers add module initialization code
here, it’s OK if you keep it empty.

myexperiments.pushbutton/myexperiments/pushbutton/config.txt

The configuration file is used to pass parameters to the experiment to
control its behavior. It’s divided into four sections, which we’ll
briefly discuss next.

[Experiment]
mode = sandbox
auto_recruit = true
custom_variable = true
num_participants = 2

The first is the Experiment section. Here we define the experiment
specific parameters. Most of these parameters are described in the
configuration section.

The parameter mode sets the experiment mode, which can be one of debug
(local testing), sandbox (MTurk sandbox), and live (MTurk). auto_recruit
turns automatic participant recruitment on or off. num_participants
sets the number of participants that will be recruited.

Of particular interest in this section is the custom_variable
parameter. This is part of an example of how to add custom variables to
an experiment. Here we set the value to True. See the experiment code
below to understand how to define the variable.

[MTurk]
title = pushbutton
description = An experiment where the user has to press a button
keywords = Psychology
base_payment = 1.00
lifetime = 24
duration = 0.1
contact_email_on_error = jsmith@smith.net
browser_exclude_rule = MSIE, mobile, tablet

The next section is for the MTurk configuration parameters. Again,
those are all discussed in the configuration section. Note that many
of the parameter values above came directly from the Cookiecutter
template questions.

[Database]
database_url = postgresql://postgres@localhost/dallinger
database_size = standard-0

The Database section contains just the database URL and size
parameters. These should only be changed if you have your database in
a non standard location.

[Server]
dyno_type = free
num_dynos_web = 1
num_dynos_worker = 1
host = 0.0.0.0
clock_on = false
logfile = -

Finally, the Server section contains Heroku related parameters.
Depending on the number of participants and size of the experiment,
you might need to set the dyno_type and num_dynos_web parameters
to something else, but be aware that most dyno types require a paid
account. For more information about dyno types, please take a look at
the heroku guide [https://devcenter.heroku.com/articles/dyno-types].

myexperiments.pushbutton/myexperiments/pushbutton/experiment.py

At last, we get to the experiment code. This is where most of your
effort will take place. The pushbutton experiment is simple and the
code is short, but it’s important that you understand everything that
happens here.

from dallinger.config import get_config
from dallinger.experiments import Experiment
from dallinger.networks import Empty
try:
 from bots import Bot
 Bot = Bot
except ImportError:
 pass

The first section of the code consists of some import statements to
get the Dallinger framework parts ready.

After the Dallinger imports we try to import a bot from within the
experiment directory. If none are defined, we simply skip this step.
See the next section for more about bots.

config = get_config()

def extra_parameters():

 types = {
 'custom_variable': bool,
 'num_participants': int,
 }

 for key in types:
 config.register(key, types[key])

Next, we get the experiment configuration, which includes parsing
the config.txt file shown above. The get_config() call also
looks for an extra_parameters function, which is used to
register the custom_variable and num_participants parameters
discussed in the configuration section above.

class PushButton(Experiment):
 """Define the structure of the experiment."""
 num_participants = 1

 def __init__(self, session=None):
 """Call the same parent constructor, then call setup() if we have a session.
 """
 super(PushButton, self).__init__(session)
 if session:
 self.setup()

 def configure(self):
 super(PushButton, self).configure()
 self.experiment_repeats = 1
 self.custom_variable = config.get('custom_variable')
 self.num_participants = config.get('num_participants', 1)

 def create_network(self):
 """Return a new network."""
 return Empty(max_size=self.num_participants)

Finally, we have the PushButton class, which contains the main
experiment code. It inherits its behavior from Dallinger’s
Experiment class, which we imported before. Since this is a
very simple experiment, we don’t have a lot of custom code here,
other than setting up initial values for our custom parameters in
the configure method.

If you had a class defined somewhere else representing some objects
in your experiment, the place to initialize an instance would be the
__init__ method, which is called by Python on experiment
initialization. The best place to do that would be the line after the
self.setup() call, right after we are sure that we have a session.

Your experiment can do whatever you want, and use any dependencies
that you need. The Python code is used mainly for backend tasks,
while most interactivity depends on Javascript and HTML pages, which
are discussed below.

myexperiments.pushbutton/myexperiments/pushbutton/bots.py

One of Dallinger’s features is the ability to have automated
experiment participants, or bots. These allow the experimenter to
perform simulated runs of an experiment using hundreds or even
thousands of participants easily. To support bots, an experiment
needs to have a bots.py file that defines at least one bot. Our
sample experiment has one, which if you recall was imported at the
top of the experiment code.

There are two kinds of bots. The first, or regular bot, uses a
webdriver to simulate all the browser interactions that a real
human would have with the experiment. The other bot type is the
high performance bot, which skips the browser simulation and
interacts directly with the server.

import logging
import requests

from selenium.webdriver.common.by import By
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

from dallinger.bots import BotBase, HighPerformanceBotBase

logger = logging.getLogger(__file__)

The bot code first imports the bot base classes, along with some
webdriver code for the regular bot, and the requests library, for
the high performance bot.

class Bot(BotBase):
 """Bot tasks for experiment participation"""

 def participate(self):
 """Click the button."""
 try:
 logger.info("Entering participate method")
 submit = WebDriverWait(self.driver, 10).until(
 EC.element_to_be_clickable((By.ID, 'submit-response')))
 submit.click()
 return True
 except TimeoutException:
 return False

The Bot class inherits from BotBase. A bot needs to have a
participate method, which simulates a subject’s participation.
For this experiment, we simply wait until a clickable button with
the id submit-response is loaded, and then we click it. That’s
it. Other experiments will of course require more complex
interactions, but this is the gist of it.

To write a bot you need to know fairly well what your experiment
does, plus a good command of the Selenium webdriver API, which
thankfully has
extensive documentation [http://selenium-python.readthedocs.io/api.html].

class HighPerformanceBot(HighPerformanceBotBase):
 """Bot for experiment participation with direct server interaction"""

 def participate(self):
 """Click the button."""
 self.log('Bot player participating.')
 node_id = None
 while True:
 # create node
 url = "{host}/node/{self.participant_id}".format(
 host=self.host,
 self=self
)
 result = requests.post(url)
 if result.status_code == 500 or result.json()['status'] == 'error':
 self.stochastic_sleep()
 continue

 node_id = result.json.get('node', {}).get('id')

 while node_id:
 # add info
 url = "{host}/info/{node_id}".format(
 host=self.host,
 node_id=node_id
)
 result = requests.post(url, data={"contents": "Submitted",
 "info_type": "Info"})
 if result.status_code == 500 or result.json()['status'] == 'error':
 self.stochastic_sleep()
 continue

 return

The high performance bot works very differently. It uses the requests
library to directly post URLs to the server, passing expected values as
request parameters. This works much faster than simulating a browser,
thus allowing for more bots to participate in an experiment using
fewer resources.

myexperiments.pushbutton/myexperiments/pushbutton/templates/layout.html

This template defines the layout to be used by the all the experiment
pages.

{% extends "base/layout.html" %}

{% block title -%}
 Psychology Experiment
{%- endblock %}

{% block libs %}
 <script src="/static/scripts/store+json2.min.js" type="text/javascript"> </script>
 {{ super() }}
 <script src="/static/scripts/experiment.js" type="text/javascript"> </script>
{% endblock %}

As far as layout goes, this template doesn’t do much else than setting
the title, but the important part to notice here is that we include the
experiment’s Javascript files. Here is where you can add any Javascript
libraries that you need to use for your experiment.

myexperiments.pushbutton/myexperiments/pushbutton/templates/ad.html

The ad template is where the experiment is presented to a potential user.
In this experiment, we simply use the default ad template.

myexperiments.pushbutton/myexperiments/pushbutton/templates/consent.html

The consent template is where the user accepts (or not) to participate in
the experiment.

{% extends "base/consent.html" %}

{% block consent_button %}
 <!-- custom consent button/action -->
 <button type="button" id="consent" class="btn btn-primary btn-lg">I agree</button>
{% endblock %}

In our experiment, we extend the original consent template, and use the
consent_button block to add a custom button for expressing consent.

myexperiments.pushbutton/myexperiments/pushbutton/templates/instructions.html

Next come the instructions for the experiment. For our instructions
template, notice how we don’t extend an “instructions” template, but
rather the more generic layout template, because instructions are
much more particular to the experiment objectives and interaction
mechanisms.

{% extends "layout.html" %}

{% block body %}
 <div class="main_div">
 <hr>

 <p>In this experiment, you will click a button.</p>

 <hr>

 <div>
 <div class="row">
 <div class="col-xs-10"></div>
 <div class="col-xs-2">
 <button type="button" class="btn btn-success btn-lg"
 onClick="dallinger.allowExit(); dallinger.goToPage('exp');">
 Begin</button>
 </div>
 </div>
 </div>
</div>
{% endblock %}

The instructions are the last stop before beginning the actual
experiment, so we have to direct the user to the experiment page.
This is done by using the dallinger.goToPage method in the
button’s onClick handler. Notice the call to dallinger.allowExit
right before the page change. This is needed because Dallinger is
designed to prevent users from accidentally leaving the experiment
by closing the browser window before it’s finished. The allowExit
call means that in this case it’s fine to leave the page, since we
are going to the experiment page.

{% block scripts %}
 <script>
 dallinger.createParticipant();
 </script>
{% endblock %}

A Dallinger experiment requires a participant to be created
before beginning. Sometimes this is done conditionally or at a
specific event in the experiment flow. Since this experiment just
requires pushing the button, we create the participant on page load
by calling the dallinger.createParticipant method.

myexperiments.pushbutton/myexperiments/pushbutton/templates/exp.html

The exp.html template is where the main experiment action happens. In this
case, there’s not a lot of action, though.

{% extends "layout.html" %}

{% block body %}
 <div class="main_div">
 <div id="stimulus">
 <h1>Click the button</h1>
 <button id="submit-response" type="button" class="btn btn-primary">Submit</button>
 </div>
 </div>
{% endblock %}

{% block scripts %}
 <script>
 create_agent();
 </script>
{% endblock %}

We fill the body block with a simple <div> that includes a heading
and the button to press. Notice how the submit-response id corresponds
to the one that the bot code, discussed above, uses to find the button in the
page.

The template doesn’t include any mechanism for sending the form to the
experiment server. This is done separately by the experiment’s Javascript
code, described below.

myexperiments.pushbutton/myexperiments/pushbutton/templates/questionnaire.html

Dallinger experiments conclude with the user filling in a questionnaire
about the completed experiment. It’s possible to add custom questions to
this questionnaire, which our questionnaire.html template does:

{% extends "base/questionnaire.html" %}

{% block questions %}
<!-- additional custom questions -->
<div class="row question">
 <div class="col-md-8">
 On a scale of 1-10 (where 10 is the most engaged), please rate the button:
 </div>
 <div class="col-md-4">
 <select id="button-quality" name="button-quality">
 <option value="10">10 - Very good button</option>
 <option value="9">9</option>
 <option value="8">8</option>
 <option value="7">7</option>
 <option value="6">6</option>
 <option value="5" SELECTED>5 - Moderately good button</option>
 <option value="4">4</option>
 <option value="3">3</option>
 <option value="2">2</option>
 <option value="1">1 - Terrible button</option>
 </select>
 </div>
</div>
{% endblock %}

In this case we add a simple select question, but you can use any
Javascript form tools to add more complex question UI elements.

myexperiments.pushbutton/myexperiments/pushbutton/static/scripts/experiment.js

The final piece in the puzzle is the experiment.js file, which contains
the Javascript code for the experiment. Like the Python code, this is
a simple example, but it can be as complex as you need, and use any
Javascript libraries that you wish to include in your experiment.

var my_node_id;

$(document).ready(function() {

 // do not allow user to close or reload
 dallinger.preventExit = true;

 // Print the consent form.
 $("#print-consent").click(function() {
 window.print();
 });

 // Consent to the experiment.
 $("#consent").click(function() {
 dallinger.allowExit();
 dallinger.goToPage('instructions');
 });

 // Consent to the experiment.
 $("#no-consent").click(function() {
 dallinger.allowExit();
 window.close();
 });

The first few methods deal with the consent form. Basically, if the user
consents, we go to the instructions page, and if not, the window is closed
and the experiment ends. As you can see, there’s also a button to print
the consent page.

 $("#submit-response").click(function() {
 $("#submit-response").addClass('disabled');
 $("#submit-response").html('Sending...');
 dallinger.createInfo(my_node_id, {contents: "Submitted", info_type: "Info"})
 .done(function (resp) {
 dallinger.allowExit();
 dallinger.goToPage('questionnaire');
 })
 .fail(function (rejection) {
 dallinger.error(rejection);
 });
 });
});

// Create the agent.
var create_agent = function() {
 // Setup participant and get node id
 $("#submit-response").addClass('disabled');
 dallinger.createAgent()
 .done(function (resp) {
 my_node_id = resp.node.id;
 $("#submit-response").removeClass('disabled');
 })
 .fail(function (rejection) {
 dallinger.error(rejection);
 });
};

For the experiment page, when the submit-response button is clicked,
we create an Info to record the submission and send the user to the
questionnaire page, which completes the experiment. If there was some
sort of error, we display an error page.

The create_agent function is called when the experiment page loads,
to make sure the button is not enabled until Dallinger is fully setup
for the experiment.

Extending the Template

Understanding the experiment files is one thing, but how do we go from
template to new experiment? In this section, we’ll extend the cookiecutter
template to create a full experiment. This way, the most common points of
extension and user requirements will be discussed, thus making it easier to
think about creating original experiments.

The Bartlett 1932 Experiment

Sir Frederic Charles Bartlett was a British psychologist and the first
professor of experimental psychology at the University of Cambridge. His
most important work was Remembering (1932) which consisted of experimental
studies on remembering, imaging, and perceiving.

For our work in this section, we will take one of Bartlett’s experiments and
turn it into a Dallinger experiment. Our experiment will be simple:
participants will be given a text, and then they will have to recreate that
text word for word as best as they can.

Starting the Cookiecutter template

First, we need to create our experiment template, using cookiecutter. If you
recall, the initial section of this tutorial showed how to do this:

cookiecutter https://github.com/Dallinger/cookiecutter-dallinger.git

Make sure to answer “bartlett1932” to the experiment_name question. You can
use the default values for the rest.

Setting Up the Network

The first thing to decide is how participants will interact with the
experiment and with each other. Some experiments might just need participants
to individually interact with the experiment, while others may require groups
of people communicating with each other as well.

Dallinger organizes all experiment participants in networks. A network can
include various kinds of nodes. Most nodes are associated with participants,
but there are other kinds of nodes, like sources, which are used to transmit
information. Nodes are connected to other nodes in different ways, depending
on the type of network that is defined for the experiment.

Sources are an important kind of node, because many times the information
(stimulus) required for conducting the experiment will come from one. A
source can only transmit information, never receive it. For this experiment,
we will use a source to send the text that the user must read and recreate.

Dallinger supports various kinds of networks out of the box, and you can
create your own too. The most common networks are:

	Chain. A network where each new node is connected to the most recently
added node. The top node of the chain can be a source.

	FullyConnected. A network in which each node is connected to every other
node. This includes sources.

	Empty. A network where every node is isolated from the rest. It can
include a source, in which case it will be connected to the nodes.

For more information about networks in Dallinger, see the
network documentation.

For this experiment, we will use a chain network. The top node will be a
source, so that we can use different texts on each run, and send them to
each newly connected participant. In fact, most of the Python code for the
experiment will deal with network management. Let’s get started. All the
code in this section goes into the experiment.py file generated by the
cookiecutter:

from dallinger.experiment import Experiment
from dallinger.networks import Chain

from . import models

class Bartlett1932(Experiment):
 """An experiment from Bartlett's Remembering."""

 def __init__(self, session=None):
 super(Bartlett1932, self).__init__(session)
 self.models = models
 self.experiment_repeats = 1
 self.initial_recruitment_size = 1
 if session:
 self.setup()

First, we import the Experiment class, which we will extend for our
Bartlett experiment. Next, we import Chain, which is the class for our
chosen network. After that, we import our models, which will be discussed in
the next section.

Following this, we define the experiment class Bartlett1932, subclassing
Dallinger’s Experiment class. The __init__ method calls the Experiment
initialization first, then does common setup work. For other experiments,
you might need to change the number of experiment_repeats (how many times
the experiment is run) and the initial_recruitment_size (how many
participants are going to be recruited initially). In this case, we set both
to 1.

Note that as part of the initialization, we take the models we imported above
and assign them to the created instance.

The last line calls self.setup, which is defined as follows:

def setup(self):
 if not self.networks():
 super(Bartlett1932, self).setup()
 for net in self.networks():
 self.models.WarOfTheGhostsSource(network=net)

The self.networks() call at the top, will get all the networks defined for
this experiment. When it is first run, this will return an empty list, in
which case we will call the Experiment setup. After this call, the network
will be defined.

Once we have a network, we add our source to it as the first node. This will
be discussed in more detail in the next section. Just take note that the
source constructor takes the current network as a parameter.

The network setup code will call the create_network method in our
experiment:

def create_network(self):
 return Chain(max_size=5)

The only thing this method does is create a chain network, with a maximum
size of 5.

Our experiment will also need to transmit the source information when a new
participant joins. That is achieved using the add_node_to_network method.
You can add this method to any experiment where you need to do something to
newly added nodes:

def add_node_to_network(self, node, network):
 network.add_node(node)
 parents = node.neighbors(direction="from")
 if len(parents):
 parent = parents[0]
 parent.transmit()
 node.receive()

The method will get as parameters the new node and the network to which it is
being added. The first thing to do is not forgetting to add the node to the
network. Once that is safely behind, we get the node’s parents using the
neighbors method. The parents are any nodes that the current node is
connecting from, so we use the direction=”from” parameter in the call.

If there are any parents (and in this case, there will be). We get the first
one, and call its transmit method. Finally, the node’s receive method is
called, to receive the transmission.

Recruitment

Closely connected to the experiment network structure, recruitment is the
method by which we get experiment participants. For this, Dallinger uses a
Recruiter subclass. Among other things, a recruiter is responsible for
opening recruitment, closing recruitment, and recruiting new participants
for the experiment.

As you might already know, Dallinger works closely with Amazon’s Mechanical
Turk, which for the purposes of our experiments, you can think of as a
crowdsourcing marketplace for experiment participants. The default
Dallinger recruiter knows how to make experiments available for MTurk users,
and how to recruit those users into an experiment.

An experiment’s recruit method communicates with the recruiter to get the
participants into its network:

def recruit(self):
 if self.networks(full=False):
 self.recruiter.recruit(n=1)
 else:
 self.recruiter.close_recruitment()

In our case, we only need to get participants one by one. We first check if
the experiment networks are already full, in which case we skip the
recruitment call (full=False will only return non-full networks). If there
is space, we call the recruit method of the recruiter. Otherwise, we call
close_recruiment, to end recruitment for this run.

It is important to note that recruitment will only start automatically if the
experiment is configured to do so, bu setting auto_recruit to true in the
config.txt file. The template that we created already has this variable set
up like this.

Sources and Models

Earlier, we mentioned that we needed a source of information that could
send new participants the text to be read and recalled for our experiment.
In fact, we assumed that this already existed, and proceeded to add the
from . import models line in our code in the previous section.

To make this work, we need to create a models.py file inside our
experiment, and add this code:

from dallinger.nodes import Source
import random

class WarOfTheGhostsSource(Source):

 __mapper_args__ = {
 "polymorphic_identity": "war_of_the_ghosts_source"
 }

 def _contents(self):
 stories = [
 "ghosts.md",
 "cricket.md",
 "moochi.md",
 "outwit.md",
 "raid.md",
 "species.md",
 "tennis.md",
 "vagabond.md"
]
 story = random.choice(stories)
 with open("static/stimuli/{}".format(story), "r") as f:
 return f.read()

Recall that Dallinger uses a database to store experiment data. Most of
Dallinger’s main objects, including Source, are defined as
SQLAlchemy [https://www.sqlalchemy.org/] models. To define a source,
the only requirement is that it provide a _contents method, which
should return the source information.

For our experiment, we will add a static/stimuli directory where we’ll
store our story text files. In the code above, you can see that we
explicitly name eight stories. If you are following along and typing the
code as we go, you can get those files from the dallinger repository [https://github.com/Dallinger/Dallinger/tree/master/demos/dlgr/demos/bartlett1932/static/stimuli]. You can also add any text files that you have,
and simply change the stories list above to use their names.

Our _contents method just selects one of these files randomly and
returns its full content (f.read() does that).

When a node’s transmit method is called, dallinger looks for its _what
method and calls it to get the information to be transmitted. In the case
of a source, this in turn calls the source’s create_information method,
which finally calls the _contents method and returns the result. The
chain of calls is like this:

transmit() -> _what() -> create_information() -> _contents().

This might seem like a roundabout way to get the information, but it allows
us to override any of the steps and return different information types or
other modifications. Much of Dallinger is designed in this way, making it
easy to create compatible, but perhaps completely different versions of its
main constructs.

The Experiment Code

Now that we are done setting up the experiment’s infrastructure, we can
write the code that will drive the actual experiment. Dallinger is very
flexible, and you can design really complicated experiments for it. Some
will require pretty heavy backend code, and probably a handful of
dependencies. For this kind of advanced experiments, a lot of the code
could be in Python.

Dallinger also includes a Redis-based chat backend, which can be used to
relay messages from experiment participants to the application and each
other. All you have to do to enable this is to define a channel class
variable with a string prefix for your experiment, and then you can use the
experiment’s send method to handle messages. Using this backend, you
can easily create chat-enabled experiments, and even graphical UIs that
can communicate user actions using channel messages.

For this tutorial, however, we are keeping it simple, and thus will not
require any other Python code for it. We already have a source for the texts
defined, the network is set up, and recruitment is enabled, so all we need
to get the Bartlett experiment going is a simple Javascript UI.

The code that we will walk through will be saved in our experiment.js file:

var my_node_id

// Consent to the experiment.
$(document).ready(function() {

 dallinger.preventExit = true;

The experiment.js file will be executed on page load (see below for the
template walk through), so we use the JQuery $(document).ready hook to
run our code.

The very first thing we do is setting dallinger.preventExit to True, which
will prevent experiment participants from closing the window or reloading the
page. This is to avoid the experiment being interrupted and the leaving the
participant in an inconsistent state.

Next, we define a few functions that will be called from the various
experiment templates. This are functions that are more or less required for
all experiments:

$("#print-consent").click(function() {
 window.print();
});

$("#consent").click(function() {
 store.set("recruiter", dallinger.getUrlParameter("recruiter"));
 store.set("hit_id", dallinger.getUrlParameter("hit_id"));
 store.set("worker_id", dallinger.getUrlParameter("worker_id"));
 store.set("assignment_id", dallinger.getUrlParameter("assignment_id"));
 store.set("mode", dallinger.getUrlParameter("mode"));

 dallinger.allowExit();
 dallinger.goToPage('instructions');
});

$("#no-consent").click(function() {
 dallinger.allowExit();
 window.close();
});

$("#go-to-experiment").click(function() {
 dallinger.allowExit();
 dallinger.goToPage('experiment');
});

Mostly, these functions are related to the user expressing consent to
participate in the experiment, and getting to the real experiment page.

The consent page will have a print-consent button, which will simply call
the browser’s print function for printing the page.

Next, if the user clicks consent, and thus agrees to participate in the
experiment, we store the experiment and participant information from the
URL, so that we can retrieve it later. The store.set calls use a local
storage library to keep the values handy.

Once we have saved the data, we enable exiting the window, and direct the
user to the instructions page.

If the user clicked on the no-consent button instead, it means that they
did not consent to participate in the experiment. In that case, we enable
exiting, and simply close the window. We are done.

If the user got as far as the instructions page. They will see a button that
will sent them to the experiment when clicked. This is the go-to-experiment
button, which again enables page exiting and sets the location to the
experiment page.

We now come to our experiment specific code. The plan for our UI is like
this: we will have a page displaying the text, and a text area widget to
write the text that the user can recall after reading it. We will have
both in a single page, but only show one at a time. When the page loads, the
user will see the text, followed by a finish-reading button:

$("#finish-reading").click(function() {
 $("#stimulus").hide();
 $("#response-form").show();
 $("#submit-response").removeClass('disabled');
 $("#submit-response").html('Submit');
});

When the user finishes reading, and clicks on the button, we hide the text
and show the response form. This form will have a submit-response button,
which we enable. Finally, the text of the button is changed to read “Submit”.

This, and all the Javascript code in this section, uses the JQuery Javascript
library, so check the JQuery documentation [https://api.jquery.com] if
you need more information.

Now for the submit-response button code:

 $("#submit-response").click(function() {
 $("#submit-response").addClass('disabled');
 $("#submit-response").html('Sending...');

 var response = $("#reproduction").val();

 $("#reproduction").val("");

 dallinger.createInfo(my_node_id, {
 contents: response,
 info_type: 'Info'
 }).done(function (resp) {
 create_agent();
 });
 });

});

When the user is done typing the text and clicks on the submit-response
button, we disable the button and set the text to “Sending…”. Next, we
get the typed text from the reproduction text area, and wipe out the text.

The dallinger.createInfo function calls the Dallinger Python backend, which
creates a Dallinger Info object associated with the current participant. This
info will store the recalled text. If the info creation succeeds, the
create_agent function will be called:

var create_agent = function() {
 $('#finish-reading').prop('disabled', true);
 dallinger.createAgent()
 .done(function (resp) {
 $('#finish-reading').prop('disabled', false);
 my_node_id = resp.node.id;
 get_info();
 })
 .fail(function (rejection) {
 if (rejection.status === 403) {
 dallinger.allowExit();
 dallinger.goToPage('questionnaire');
 } else {
 dallinger.error(rejection);
 }
 });
};

The create_agent function is called twice in this experiment. The first
time when the experiment page loads, and the second time when the
submit-response button is clicked.

Both times, it first disables the finish-reading button before calling the
dallinger.createAgent function. This function calls the Python backend,
to create an experiment node for the current participant.

The first time, this call will succeed, since there is no node defined for
this participant. In that case, we enable the finish-reading button and
save the returned node’s id in the my_node_id global variable defined at
the start of our Javascript code. Finally, we call the get_info function
defined below.

The second time that create_agent is called, is when the text is
submitted by the user. When that happens, the underlying createAgent call
will fail, and return a rejection status of “403”. The code above checks
for that status, and if it finds it, that’s the signal for us to finish
the experiment and send the user to the Dallinger questionnaire page. If
the rejection status is not “403”, that means something unexpected
happened, and we need to raise a Dallinger error, effectively ending the
experiment.

Now let’s discuss the get_info function mentioned above, which is
called when the experiment first calls the create_agent function:

var get_info = function() {
 dallinger.getReceivedInfos(my_node_id)
 .done(function (resp) {
 var story = resp.infos[0].contents;
 $("#story").html(story);
 $("#stimulus").show();
 $("#response-form").hide();
 $("#finish-reading").show();
 })
 .fail(function (rejection) {
 console.log(rejection);
 $('body').html(rejection.html);
 });
};

Remember that in the Python code above, in the add_node_to_network
method, we looked for the participant’s parent, and then called its
transmit method, followed by the node’s own receive method. This
transmits the parent node’s info to the new node. The Javascript get_info
function tries to get that info by calling dallinger.getReceivedInfos with
the node id that we saved after successfully calling dallinger.createAgent.

For the first participant, this info will contain the text generated by the
source we defined above. That is, the full text of one of the stimulus
stories, chosen at random. The second participant will get the text as
recalled by the first participant, and so on. The last participant will
likely have a much different text to work with than the first.

Once get_info gets the text, it puts it in the story textarea, and
shows it to the user, by displaying the stimulus div. Then it makes sure
the response-form is not visible, and shows the finish-reading button.

If anything fails, we log the rejection message to the console, and show
the error to the user.

The experiment templates

The experiment uses regular dallinger templates for the ad page and
consent form. It does define its own layout, as an example of how to
include dependencies. Here’s the full layout.html template:

{% extends "base/layout.html" %}

{% block title -%}
 Bartlett 1932 Experiment
{%- endblock %}

{% block libs %}
 <script src="/static/scripts/store+json2.min.js" type="text/javascript"> </script>
 {{ super() }}
 <script src="/static/scripts/experiment.js" type="text/javascript"> </script>
{% endblock %}

The only important part if the layout template is the libs block. Here you
can add any Javascript dependencies that your experiment needs. Just place
them in the experiment’s static directory, and they will be available for
linking from this page.

Note how we load everything else before the experiment.js file that
contains our experiment code (The super call brings up any dependencies
defined in the base layout).

Next comes the instructions.html template:

{% extends "layout.html" %}

{% block body %}
 <div class="main_div">
 <h1>Instructions</h1>

 <hr>

 <p>In this experiment, you will read a passage of text. </p>
 <p>Your job is to remember the passage as well as you can, because you will be asked some questions about it afterwards.</p>

 <hr>

 <div>
 <div class="row">
 <div class="col-xs-10"></div>
 <div class="col-xs-2">
 <button id="go-to-experiment" type="button" class="btn btn-success btn-lg">
 Begin</button>
 </div>
 </div>
 </div>
 </div>
{% endblock %}

{% block scripts %}
 <script>
 dallinger.createParticipant();
 </script>
{% endblock %}

Here is where you will put specific instructions for your experiment. Since
we get here right after consenting to participate in the experiment, it’s
also a good place to create the experiment participant node. This is done by
calling the dallinger.createParticipant function upon page load.

Notice also that after the instructions we add the go-to-experiment
button that will send the user to the experiment page, where the main UI for
our experiment is defined:

{% extends "layout.html" %}

{% block body %}
 <div class="main_div">
 <div id="stimulus">
 <h1>Read the following text:</h1>
 <div><blockquote id="story"><p><< loading >></p></blockquote></div>
 <button id="finish-reading" type="button" class="btn btn-primary">I'm done reading.</button>
 </div>

 <div id="response-form" style="display:none;">
 <h1>Now reproduce the passage, verbatim:</h1>
 <p>Note: Your task is to recreate the text, word for word, to the best of your ability.<p>
 <textarea id="reproduction" class="form-control" rows="10"></textarea>
 <p></p>
 <button id="submit-response" type="button" class="btn btn-primary">Submit response.</button>
 </div>
 </div>
{% endblock %}

{% block scripts %}
 <script>
 create_agent();
 </script>
{% endblock %}

The exp.html template is the one that connects with the experiment code we
described above. There is stimulus div where the story text will be
displayed, inside the story blockquote tag. There is also the
finish-reading button. which will be disabled until we get the story text
from the source.

After that, we have the response-form div, which contains the
reproduction textarea where the user will type the text. Note that the
div’s display attribute is set to none, so the form will not be
visible at page load time. Finally, the submit-response button will take
care of initiating the submission process.

At the bottom of the template, inside a script tag, is the create_agent call
that will get the source info and enable the stimulus area.

Dallinger’s experiment server uses Flask, which in turn uses the Jinja2
templating engine. Consult the Flask documentation [http://jinja.pocoo.org/docs/2.10/templates/] for more information about
how the templates work.

Creating a Participant Bot

We now have a complete experiment, but there’s one more interesting thing
that we will cover in this tutorial. Dallinger allows the possibility of
using bot participants. That is, automated participants that know how to
do an experiment’s tasks. It is even possible to mix human and bot
participants.

For this experiment, we will add a bot that can navigate through the
experiment and submit the response at the end. Bots have perfect memories,
but we could spend a lot of effort trying to make them act as forgetful
humans. We will not do so, since it is out of the scope of this tutorial.

A basic bot gets the same exact pages that a human would, and needs to
use a webdriver to go from page to page. Dallinger bots use the
selenium webdrivers, which need a few imports to begin (add this to
experiment.py):

from selenium.webdriver.common.by import By
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

from dallinger.bots import BotBase

After the selenium imports, we import BotBase from dallinger, which our
bot will subclass. The only required method for a bot is the participate
method, which is called by the bot framework when the bot is recruited.

Here is the bot code:

class Bot(BotBase):

 def participate(self):
 try:
 ready = WebDriverWait(self.driver, 10).until(
 EC.element_to_be_clickable((By.ID, 'finish-reading')))
 stimulus = self.driver.find_element_by_id('stimulus')
 story = stimulus.find_element_by_id('story')
 story_text = story.text
 ready.click()
 submit = WebDriverWait(self.driver, 10).until(
 EC.element_to_be_clickable((By.ID, 'submit-response')))
 textarea = WebDriverWait(self.driver, 10).until(
 EC.element_to_be_clickable((By.ID, 'reproduction')))
 textarea.clear()
 text = self.transform_text(story_text)
 textarea.send_keys(text)
 submit.click()
 return True
 except TimeoutException:
 return False

 def transform_text(self, text):
 return "Some transformation...and %s" % text

The participate method needs to return True if the participation was
successful, and False otherwise. Since the webdriver could fail at
getting the correct page in time, we wrap the whole participation
sequence in a try clause. Combined with the WebDiverWait method of
the webdriver, this will raise a TimeoutException if anything fails and
the bot can’t proceed after the specified timeout. In this example, we use
10 seconds for the timeout.

The rest is simple: the bot waits until it can see the finish-reading
button and assigns it to the ready variable. It then finds the stimulus
div and the story inside of that, and extracts the story text. Once it
gets the text, the bot “clicks” the ready button.

The bot next waits for the submit-response div to be active, and the
reproduction textarea activated. Just to do something with it for this
example, the bot calls the transform_text method, which just adds a few
words to the story text. It then sends the text to the textarea element,
using its send_keys method. After that, the task is complete, and the
form is submitted (submit.click). Finally, the bot returns True to
signal success.

Developing Your Own Experiment

Now that you are more familiar with the full experiment contents, and have
seen how to go from template to finished experiment, you are in position to
begin extending the code to create your first experiment. Dallinger has an
extensive API, so you will probably need to refer to the documentation
constantly as you go along. Here are some resources within the documentation
that should prove to be very useful while you develop your experiment further:

	The Web API

	The Javascript API

	The Database API

	The Experiment Class

	Writing Bots

Networks

Depending on an experiment’s objectives, there are different ways that
experiment participants can interact with each other and with the
experiment’s stimuli. For some experiments, participants may receive the
same initial stimuli and process it individually. For other experiments,
they may sequentially interact with the stimuli. Some experiments may
require participants to interact among themselves in various ways.

In Dallinger, these interactions among participants and stimuli are
represented using networks. Each participant and each stimulus represent a
node in a network. The way these nodes are connected to each other is known
as a network topology. For brevity, we will use the term network from now
on when discussing Dallinger network topologies.

Dallinger comes with a variety of networks that can be used by experimenters,
and it’s possible both to extend these networks or create completely new ones
as well. The networks included in Dallinger are:

	Empty

	Chain

	DelayedChain

	Star

	Burst

	FullyConnected

	DiscreteGenerational

	ScaleFree

	SequentialMicrosociety

	SplitSampleNetwork

Nodes and Sources

In these networks, each participant is considered as a node. There is also a
special kind of node, known as a source, which transmits information to
other nodes. Sources are used in Dallinger as a means to send the stimuli to
the participants. Not all experiments have sources, though. A chatroom
experiment, for example, could just rely on user interactions and not
require any other stimuli.

All nodes have methods named transmit and receive, for sending and
receiving information to or from other nodes. These methods can be used when
adding a node to allow any specialized communication between nodes that an
experiment may require.

Nodes can have a fitness property, which is a number that can be used in
some network models. The basic networks do not use this property.

Some networks require that nodes have other properties, so for properly using
those networks, an experiment would need to add these properties to its
nodes.

Node connections

A node can be connected to another node in three ways:

	“to” - a single direction connection to another node

	“from” - a single direction connection from another node

	“both” - a bidirectional connection to another node

A node can transmit information when connected to another node. It can
receive information when connected from another node. If it is connected to
another node in both directions, it can both receive and transmit.

Nodes have a connect method that is used to connect them to other nodes.
This method can specify the direction of a connection:

my_node.connect(some_node, direction='both')
my_node.connect(another_node, direction='from')

The default direction is “to”. The following example will make a to
connection:

my_node.connect(another_node)

Note that sources can only transmit information, so the only connection type
allowed for a source node is to another node:

my_source.connect(receiver_node)

Using a network

To use a specific network, an experiment needs to define a create_network
method in its code. For example, to use a Chain network:

from dallinger.experiment import Experiment
from dallinger.networks import Chain

class MyExperiment(Experiment):

 def create_network(self):
 return Chain(max_size=5)

Like the example shows, to use a network it’s necessary to import it from
dallinger.networks using the network class name (the name from the list
given above). Once imported, it needs to be initialized as part of the
experiment, which is done using the create_network method.

All networks accept the max_size parameter, which is illustrated above. It
represents the maximum number of nodes that a network can have. In the
example above, maximum size is 5 nodes. The full method of the network can
be used to check if a network is full.

Multiple networks

In experiments configured for a number of practice_repeats or
experiment_repeats higher than one, the create_network method is called
multiple times, once for every repeat. This means that an experiment can have
multiple networks at the same time.

The experiment setup code assigns each network a role of practice or
experiment, depending on how it was created. The experiment class allows
experiment developers to query networks by role (practice, experiment), or by
state (full, not full). For example:

all_networks = exp.networks()
full_networks = exp.networks(full=True)
not_full_networks = exp.networks(full=False)
practice_networks = exp.networks(role='practice')
full_experiment_networks = exp.networks(role='experiment', full=True)

Generally, the networks created at experiment setup will all be of the same
type, but there’s nothing to stop an imaginative experimenter from creating a
different network type based on some condition, thus having multiple networks
of different types.

Common networks in Dallinger

Many experiments will be able to just use one of Dallinger’s existing
networks, rather than defining their own. Lets look at the basic networks
that can be used out of the box.

Empty

There are experiments where participants do not need to interact with each
other at all. Generally, in this case, a source will be required. The Empty
network does not connect any nodes with each other, which results in a
series of isolated nodes. The only exception is, if a source node is added,
it will be connected to all existing nodes, which means that it’s possible to
send a stimulus to all network nodes, regardless of their isolation.

[image: Empty Network]
Empty Network

Chain

A Chain network, also known as line network, connects each new node to the
previous one, so that nodes can receive information from their parent, but
cannot send information back. In other words, it’s a one way transmission
chain. In general, it’s useful to have a source as the first node, so that
an initial experiment stimulus is transmitted to the each node through the
chain. Note that this network explicitly prohibits a source to be added after
any node, so the source has to come first.

This network can be useful for experiments where some piece of information,
for example, a text, needs to be modified or interpreted by each participant
in succession.

[image: Chain Network]
Chain Network

DelayedChain

DelayedChain is a special Chain network designed to work within the limits of
MTurk configuration, which sometimes requires at least 10 participants from
the start. In this case, for a Chain network, it would be impractical to make
participants sign on from the beginning and then wait for their turn in the
Chain for a long time. To avoid this, DelayedChain basically ignores the
first 9 participants, and then starts the Chain from the 10th participant on.

This is intended to be used with a source, in order to form a long running
chain where participants are recruited as soon as the previous participant
has finished. If there’s no source, the first eleven nodes have no parent.

[image: DelayedChain Network]
DelayedChain Network

Star

A Star network uses its first node as a central node, and nodes created
after that have a bidirectional connection (both) with that node. This
means the central node can send and receive information from/to all nodes,
but every other node in the network can only communicate with the central
node.

A source can’t be used as a first node, since the connections to it need to
be in both directions.

This network can be useful for experiments where one user has a supervisory
role over others who are working individually, for example making a decision
based on advice from the other players

[image: Star Network]
Star Network

Burst

A Burst network is very similar to a Star network, except the central node is
connected to the other nodes using a to connection. In this case, a source
can be used as a central node.

This type of network can be used for experiments where participants do not
need to interact, but require the same stimuli or directions as the others.

[image: Burst Network]
Burst Network

FullyConnected

A FullyConnected network is one where all the nodes are connected to each
other in both directions, thus allowing any node to transmit and receive from
any other node. This can be very useful for cooperation experiments or
chatrooms.

A source is allowed as a node in this network. However, it will use a to
connection to the other nodes, so transmitting to it will not be allowed.

[image: FullyConnected Network]
FullyConnected Network

Other available networks

There are other, somewhat more specialized networks that an experiment can
use. Here’s a quick rundown.

DiscreteGenerational

In this network, nodes are arranged into “generations”. This network accepts
some new parameters: generations (number of generations), generation_size
(how many nodes in a generation) and initial_source. If there is an initial
source, it will be used as the parent for all first generation nodes. After
the first generation, the parent from each new node will be selected from the
previous generation, using the fitness attribute of the nodes to select it.
The higher the fitness, the higher the probability that a node will be a
parent.

Note that for this network to function correctly, the experiment nodes need
to have a generation property defined.

ScaleFree

This network takes two parameters: m0 and m. The first (m0) is the
number of initial nodes. These initial nodes will be connected in a fully
connected network among each other. The second parameter (m) is the number of
connections that every subsequent node will have. The nodes for this limited
number of connections will be chosen randomly, but nodes with more
connections will have a higher probability of being selected.

SequentialMicrosociety

A network in which each new node will be connected using a to connection to
a limited set of its most recent predecessors. The number of recent
predecessors is passed in as an argument (n) at network creation.

SplitSampleNetwork

This network helps when implementing split sample experiment designs. It
assigns a random boolean value to a property named exploratory. When this
property is True, it means that the current network is part of the
exploratory data subset.

Creating a network

In addition to the available networks, it’s fairly simple to create a custom
network, in case an experiment design calls for different node
interconnections. To create one, we can subclass from the Network model:

from dallinger.models import Network
from dallinger.nodes import Source

class Ring(Network):

 __mapper_args__ = {"polymorphic_identity": "ring"}

 def add_node(self, node):
 other_nodes = [n for n in self.nodes() if n.id != node.id]

 if isinstance(node, Source):
 raise Exception(
 "Ring network cannot contain sources."
)

 if other_nodes:
 parent = max(other_nodes, key=attrgetter('creation_time'))
 parent.connect(whom=node)

 if len(self.nodes) == self.max_size:
 parent = min(other_nodes, key=attrgetter('creation_time'))
 node.connect(whom=parent)

In the above example, we create a simple ring network, where each node is
connected in chain to the next one, until we get to the last one, which is
connected back to the first, making a full circle (thus, the ‘ring’ name).

Our Ring network is a subclass of dallinger.models.Network, which contains the basic
network model and implementation. The __mapper_args__ assignment at the
top is for differentiating this network from others, so that data exports
don’t give incorrect results. Usually the safe thing is to use the same name
as the subclass, to avoid confusion.

Most simple networks will only need to override the add_node method. This
method is called after a node is added, with the added node as a parameter.
This method then can decide how and when to connect this node to other nodes
in the network.

In our code, we first get all nodes in the network (except the new one). If
the new node is a source, we raise an exception, because due to the circular
nature of our network, there can be no sources (they don’t accept from
connections and can only transmit).

After that, we take the most recent node and connect it to the new node. At
this point, this is almost the same as a chain network, but when we get to
the last node, we connect the new node to the first node, in addition to its
connection to the previous node.

The code in the add_node method can be as complex as needed, so very
complex networks are possible. In most cases, to create a more advanced
network it will be necessary to add custom properties to it. This is done by
overriding the __init__ method of the network to add the properties. The
following example shows how to do that:

def __init__(self, new_property1, new_property2):
 self.property1 = repr(new_property1)
 self.property2 = repr(new_property2)

The properties are added as parameters to the network on creation. A custom
property need not be persistent, but in general it’s better to save it as
part of the network using the persistent custom properties available in all
Dallinger models. If they are not stored, any calculations that rely on them
have to be performed at initialization time. Once they are stored, they can
be used in any part of the network code, like in the add_node method.

In the code above, we use repr when storing the property value. This is
because Dallinger custom properties are all of the text type, so even if a
custom property represents a number, it has to be stored as a string. If the
property is a string to begin with, it’s not necessary to convert it.

Dallinger with Docker

With the release of Dallinger version 5.0.0, we have created a Python script that uses docker-compose [https://docs.docker.com/compose/] to provide an automated installation and configuration of Dallinger to run experiments.

The code and detailed instructions can be found in this github repository [https://github.com/Dallinger/Dockerfiles/blob/master/README.md/].

Please note that we consider this to be a working yet experimental method of running Dallinger. It adds an extra level of complexity which can potentially get in the way when trying to create and debug a new experiment as debugging is more diffcult than when using Dallinger natively or in a virtual machine.
Having said that, there are can be certain advantages to this method, since Docker can install everything required to run Dallinger quickly in comparison to installing all the requirements yourself, and on platforms such as Microsoft Windows where a native installation is not possible.

The Experiment Class

Experiments are designed in Dallinger by creating a custom subclass of the base
Experiment class. The code for the Experiment class is in experiments.py.
Unlike the other classes, each experiment involves only a
single Experiment object and it is not stored as an entry in a corresponding
table, rather each Experiment is a set of instructions that tell the server
what to do with the database when the server receives requests from outside.

	
class dallinger.experiment.Experiment(session=None)

	Define the structure of an experiment.

	
verbose

	Boolean, determines whether the experiment logs output when
running. Default is True.

	
task

	String, the name of the experiment. Default is “Experiment
title”.

	
session

	session, the experiment’s connection to the database.

	
practice_repeats

	int, the number of practice networks (see
role). Default is 0.

	
experiment_repeats

	int, the number of non practice networks (see
role). Default is 0.

	
recruiter

	

	
initial_recruitment_size

	int, the number of participants
requested when the experiment first starts. Default is 1.

	
known_classes

	dictionary, the classes Dallinger can make in response
to front-end requests. Experiments can add new classes to this
dictionary.

	
public_properties

	

	
__init__(session=None)

	Create the experiment class. Sets the default value of attributes.

	
add_node_to_network(node, network)

	Add a node to a network.

This passes node to add_node().

	
assignment_abandoned(participant)

	What to do if a participant abandons the hit.

This runs when a notification from AWS is received indicating that
participant has run out of time. Calls
fail_participant().

	
assignment_reassigned(participant)

	What to do if the assignment assigned to a participant is
reassigned to another participant while the first participant
is still working.

This runs when a participant is created with the same assignment_id
as another participant if the earlier participant still has the status
“working”. Calls fail_participant().

	
assignment_returned(participant)

	What to do if a participant returns the hit.

This runs when a notification from AWS is received indicating that
participant has returned the experiment assignment. Calls
fail_participant().

	
attention_check(participant)

	Check if participant performed adequately.

Return a boolean value indicating whether the participant’s data is
acceptable. This is mean to check the participant’s data to determine
that they paid attention. This check will run once the participant
completes the experiment. By default performs no checks and returns
True. See also data_check().

	
attention_check_failed(participant)

	What to do if a participant fails the attention check.

Runs when participant has failed the
attention_check(). By default calls
fail_participant().

	
bonus(participant)

	The bonus to be awarded to the given participant.

Return the value of the bonus to be paid to participant. By default
returns 0.

	
bonus_reason()

	The reason offered to the participant for giving the bonus.

Return a string that will be included in an email sent to the
participant receiving a bonus. By default it is “Thank you for
participating! Here is your bonus.”

	
collect(app_id, exp_config=None, bot=False, **kwargs)

	Collect data for the provided experiment id.

The app_id parameter must be a valid UUID.
If an existing data file is found for the UUID it will
be returned, otherwise - if the UUID is not already registered -
the experiment will be run and data collected.

See run() method for other parameters.

	
create_network()

	Return a new network.

	
create_node(participant, network)

	Create a node for a participant.

	
data_check(participant)

	Check that the data are acceptable.

Return a boolean value indicating whether the participant’s data is
acceptable. This is meant to check for missing or invalid data. This
check will be run once the participant completes the experiment. By
default performs no checks and returns True. See also,
attention_check().

	
data_check_failed(participant)

	What to do if a participant fails the data check.

Runs when participant has failed
data_check(). By default calls
fail_participant().

	
events_for_replay(session=None, target=None)

	Returns an ordered list of “events” for replaying.
Experiments may override this method to provide custom
replay logic. The “events” returned by this method will be passed
to replay_event(). The default implementation
simply returns all Info objects in the
order they were created.

	
fail_participant(participant)

	Fail all the nodes of a participant.

	
get_network_for_participant(participant)

	Find a network for a participant.

If no networks are available, None will be returned. By default
participants can participate only once in each network and participants
first complete networks with role=”practice” before doing all other
networks in a random order.

	
info_get_request(node, infos)

	Run when a request to get infos is complete.

	
info_post_request(node, info)

	Run when a request to create an info is complete.

	
is_complete()

	Method for custom determination of experiment completion.
Experiments should override this to provide custom experiment
completion logic. Returns None to use the experiment server
default logic, otherwise should return True or False.

	
is_overrecruited(waiting_count)

	Returns True if the number of people waiting is in excess of the
total number expected, indicating that this and subsequent users should
skip the experiment. A quorum value of 0 means we don’t limit
recruitment, and always return False.

	
log(text, key='?????', force=False)

	Print a string to the logs.

	
log_summary()

	Log a summary of all the participants’ status codes.

	
classmethod make_uuid(app_id=None)

	Generates a new UUID.
This is a class method and can be called as Experiment.make_uuid().
Takes an optional app_id which is converted to a string and, if it
is a valid UUID, returned.

	
networks(role='all', full='all')

	All the networks in the experiment.

	
node_get_request(node=None, nodes=None)

	Run when a request to get nodes is complete.

	
node_post_request(participant, node)

	Run when a request to make a node is complete.

	
recruit()

	Recruit participants to the experiment as needed.

This method runs whenever a participant successfully completes the
experiment (participants who fail to finish successfully are
automatically replaced). By default it recruits 1 participant at a time
until all networks are full.

	
replay_event(event)

	Stub method to replay an event returned by
events_for_replay().
Experiments must override this method to provide replay support.

	
replay_start()

	Stub method for starting an experiment replay.
Experiments must override this method to provide replay support.

	
replay_finish()

	Stub method for ending an experiment replay.
Experiments must override this method to provide replay support.

	
replay_started()

	Returns True if an experiment replay has started.

	
run(exp_config=None, app_id=None, bot=False, **kwargs)

	Deploy and run an experiment.

The exp_config object is either a dictionary or a
localconfig.LocalConfig object with parameters
specific to the experiment run grouped by section.

	
save(*objects)

	Add all the objects to the session and commit them.

This only needs to be done for networks and participants.

	
setup()

	Create the networks if they don’t already exist.

	
submission_successful(participant)

	Run when a participant submits successfully.

	
transformation_get_request(node, transformations)

	Run when a request to get transformations is complete.

	
transformation_post_request(node, transformation)

	Run when a request to transform an info is complete.

	
transmission_get_request(node, transmissions)

	Run when a request to get transmissions is complete.

	
transmission_post_request(node, transmissions)

	Run when a request to transmit is complete.

	
vector_get_request(node, vectors)

	Run when a request to get vectors is complete.

	
vector_post_request(node, vectors)

	Run when a request to connect is complete.

Database API

The classes involved in a Dallinger experiment are:
Network, Node, Vector, Info,
Transmission, Transformation, Participant, and
Question. The code for all these classes can
be seen in models.py. Each class has a corresponding table in the
database, with each instance stored as a row in the table. Accordingly,
each class is defined, in part, by the columns that constitute the table
it is stored in. In addition, the classes have relationships to other
objects and a number of functions.

The classes have relationships to each other as shown in the diagram
below. Be careful to note which way the arrows point. A Node is a
point in a Network that might be associated with a Participant.
A Vector is a directional connection between a Node and another
Node. An Info is information created by a Node. A
Transmission is an instance of an Info being sent along a
Vector. A Transformation is a relationship between an Info
and another Info. A Question is a survey response created by a
Participant.

[image:]

SharedMixin

All Dallinger classes inherit from a SharedMixin which provides multiple
columns that are common across tables:

	
SharedMixin.id

	a unique number for every entry. 1, 2, 3 and so on…

	
SharedMixin.creation_time

	the time at which the Network was created.

	
SharedMixin.property1

	a generic column that can be used to store experiment-specific details in
String form.

	
SharedMixin.property2

	a generic column that can be used to store experiment-specific details in
String form.

	
SharedMixin.property3

	a generic column that can be used to store experiment-specific details in
String form.

	
SharedMixin.property4

	a generic column that can be used to store experiment-specific details in
String form.

	
SharedMixin.property5

	a generic column that can be used to store experiment-specific details in
String form.

	
SharedMixin.details

	a generic column for storing structured JSON data

	
SharedMixin.failed

	boolean indicating whether the Network has failed which
prompts Dallinger to ignore it unless specified otherwise. Objects are
usually failed to indicate something has gone wrong.

	
SharedMixin.time_of_death

	the time at which failing occurred

Network

The Network object can be imagined as a set of other objects with
some functions that perform operations over those objects. The objects
that Network’s have direct access to are all the Node’s in the
network, the Vector’s between those Nodes, Infos created by those
Nodes, Transmissions sent along the Vectors by those Nodes and
Transformations of those Infos. Participants and Questions do not exist
within Networks. An experiment may involve multiple Networks,
Transmissions can only occur within networks, not between them.

	
class dallinger.models.Network(**kwargs)

	Contains and manages a set of Nodes and Vectors etc.

Columns

	
Network.type

	A String giving the name of the class. Defaults to
“network”. This allows subclassing.

	
Network.max_size

	How big the network can get, this number is used by the full()
method to decide whether the network is full

	
Network.full

	Whether the network is currently full

	
Network.role

	The role of the network. By default dallinger initializes all
networks as either “practice” or “experiment”

Relationships

	
dallinger.models.Network.all_nodes

	All the Nodes in the network.

	
dallinger.models.Network.all_vectors

	All the vectors in the network.

	
dallinger.models.Network.all_infos

	All the infos in the network.

	
dallinger.models.Network.networks_transmissions

	All the transmissions int he network.

	
dallinger.models.Network.networks_transformations

	All the transformations in the network.

Methods

	
Network.__repr__()

	The string representation of a network.

	
Network.__json__()

	Return json description of a participant.

	
Network.calculate_full()

	Set whether the network is full.

	
Network.fail()

	Fail an entire network.

	
Network.infos(type=None, failed=False)

	Get infos in the network.

type specifies the type of info (defaults to Info). failed { False,
True, “all” } specifies the failed state of the infos. To get infos
from a specific node, see the infos() method in class
Node.

	
Network.latest_transmission_recipient()

	Get the node that most recently received a transmission.

	
Network.nodes(type=None, failed=False, participant_id=None)

	Get nodes in the network.

type specifies the type of Node. Failed can be “all”, False
(default) or True. If a participant_id is passed only
nodes with that participant_id will be returned.

	
Network.print_verbose()

	Print a verbose representation of a network.

	
Network.size(type=None, failed=False)

	How many nodes in a network.

type specifies the class of node, failed
can be True/False/all.

	
Network.transformations(type=None, failed=False)

	Get transformations in the network.

type specifies the type of transformation (default = Transformation).
failed = { False, True, “all” }

To get transformations from a specific node,
see Node.transformations().

	
Network.transmissions(status='all', failed=False)

	Get transmissions in the network.

status { “all”, “received”, “pending” }
failed { False, True, “all” }
To get transmissions from a specific vector, see the
transmissions() method in class Vector.

	
Network.vectors(failed=False)

	Get vectors in the network.

failed = { False, True, “all” }
To get the vectors to/from to a specific node, see Node.vectors().

Node

Each Node represents a single point in a single network. A Node must be
within a Network and may also be associated with a Participant.

	
class dallinger.models.Node(network, participant=None)

	A point in a network.

Columns

	
Node.type

	A String giving the name of the class. Defaults to
node. This allows subclassing.

	
Node.network_id

	the id of the network that this node is a part of

	
Node.participant_id

	the id of the participant whose node this is

Relationships

	
Node.network

	the network the node is in

	
Node.participant

	the participant the node is associated with

	
dallinger.models.Node.all_outgoing_vectors

	All the vectors going out from this Node.

	
dallinger.models.Node.all_incoming_vectors

	All the vectors coming in to this Node.

	
dallinger.models.Node.all_infos

	All Infos created by this Node.

	
dallinger.models.Node.all_outgoing_transmissions

	All Transmissions sent from this Node.

	
dallinger.models.Node.all_incoming_transmissions

	All Transmissions sent to this Node.

	
dallinger.models.Node.transformations_here

	All transformations that took place at this Node.

Methods

	
Node.__repr__()

	The string representation of a node.

	
Node.__json__()

	Return json description of a participant.

	
Node._to_whom()

	To whom to transmit if to_whom is not specified.

Return the default value of to_whom for
transmit(). Should not return None or a list
containing None.

	
Node._what()

	What to transmit if what is not specified.

Return the default value of what for
transmit(). Should not return None or a list
containing None.

	
Node.connect(whom, direction='to')

	Create a vector from self to/from whom.

Return a list of newly created vector between the node and whom.
whom can be a specific node or a (nested) list of nodes. Nodes can
only connect with nodes in the same network. In addition nodes cannot
connect with themselves or with Sources. direction specifies the
direction of the connection it can be “to” (node -> whom), “from” (whom
-> node) or both (node <-> whom). The default is “to”.

Whom may be a (nested) list of nodes.

	Will raise an error if:

	
	whom is not a node or list of nodes

	whom is/contains a source if direction is to or both

	whom is/contains self

	whom is/contains a node in a different network

If self is already connected to/from whom a Warning
is raised and nothing happens.

This method returns a list of the vectors created
(even if there is only one).

	
Node.fail()

	Fail a node, setting its status to “failed”.

Also fails all vectors that connect to or from the node.
You cannot fail a node that has already failed, but you
can fail a dead node.

Set node.failed to True and time_of_death
to now. Instruct all not-failed vectors connected to this node, infos
made by this node, transmissions to or from this node and
transformations made by this node to fail.

	
Node.is_connected(whom, direction='to', failed=None)

	Check whether this node is connected [to/from] whom.

whom can be a list of nodes or a single node.
direction can be “to” (default), “from”, “both” or “either”.

If whom is a single node this method returns a boolean,
otherwise it returns a list of booleans

	
Node.infos(type=None, failed=False)

	Get infos that originate from this node.

Type must be a subclass of Info, the default is
Info. Failed can be True, False or “all”.

	
Node.mutate(info_in)

	Replicate an info + mutation.

To mutate an info, that info must have a method called
_mutated_contents.

	
Node.neighbors(type=None, direction='to', failed=None)

	Get a node’s neighbors - nodes that are directly connected to it.

Type specifies the class of neighbour and must be a subclass of
Node (default is Node).
Connection is the direction of the connections and can be “to”
(default), “from”, “either”, or “both”.

	
Node.receive(what=None)

	Receive some transmissions.

Received transmissions are marked as received, then their infos are
passed to update().

“what” can be:

	None (the default) in which case all pending transmissions are
received.

	a specific transmission.

Will raise an error if the node is told to receive a transmission it has
not been sent.

	
Node.received_infos(type=None, failed=None)

	Get infos that have been sent to this node.

Type must be a subclass of info, the default is Info.

	
Node.replicate(info_in)

	Replicate an info.

	
Node.transformations(type=None, failed=False)

	Get Transformations done by this Node.

type must be a type of Transformation (defaults to Transformation)
Failed can be True, False or “all”

	
Node.transmissions(direction='outgoing', status='all', failed=False)

	Get transmissions sent to or from this node.

Direction can be “all”, “incoming” or “outgoing” (default).
Status can be “all” (default), “pending”, or “received”.
failed can be True, False or “all”

	
Node.transmit(what=None, to_whom=None)

	Transmit one or more infos from one node to another.

	“what” dictates which infos are sent, it can be:

	
	None (in which case the node’s _what method is called).

	an Info (in which case the node transmits the info)

	a subclass of Info (in which case the node transmits all
its infos of that type)

	a list of any combination of the above

	“to_whom” dictates which node(s) the infos are sent to, it can be:

	
	None (in which case the node’s _to_whom method is called)

	a Node (in which case the node transmits to that node)

	a subclass of Node (in which case the node transmits to all
nodes of that type it is connected to)

	a list of any combination of the above

	Will additionally raise an error if:

	
	_what() or _to_whom() returns None or a list containing None.

	what is/contains an info that does not originate from the
transmitting node

	to_whom is/contains a node that the transmitting node does not
have a not-failed connection with.

	
Node.update(infos)

	Process received infos.

Update controls the default behavior of a node when it receives infos.
By default it does nothing.

	
Node.vectors(direction='all', failed=False)

	Get vectors that connect at this node.

Direction can be “incoming”, “outgoing” or “all” (default).
Failed can be True, False or all

Vector

A vector is a directional link between two nodes. Nodes connected by a
vector can send Transmissions to each other, but because Vectors have a
direction, two Vectors are needed for bi-directional Transmissions.

	
class dallinger.models.Vector(origin, destination)

	A directed path that links two Nodes.

Nodes can only send each other information if they are linked by a Vector.

Columns

	
Vector.origin_id

	the id of the Node at which the vector originates

	
Vector.destination_id

	the id of the Node at which the vector terminates.

	
Vector.network_id

	the id of the network the vector is in.

Relationships

	
Vector.origin

	the Node at which the vector originates.

	
Vector.destination

	the Node at which the vector terminates.

	
Vector.network

	the network the vector is in.

	
dallinger.models.Vector.all_transmissions

	All Transmissions sent along the Vector.

Methods

	
Vector.__repr__()

	The string representation of a vector.

	
Vector.__json__()

	Return json description of a participant.

	
Vector.fail()

	Fail a vector.

	
Vector.transmissions(status='all')

	Get transmissions sent along this Vector.

Status can be “all” (the default), “pending”, or “received”.

Info

An Info is a piece of information created by a Node. It can be sent
along Vectors as part of a Transmission.

	
class dallinger.models.Info(origin, contents=None, details=None, failed=False)

	A unit of information.

Columns

	
Info.id

	

	
Info.creation_time

	

	
Info.property1

	

	
Info.property2

	

	
Info.property3

	

	
Info.property4

	

	
Info.property5

	

	
Info.details

	

	
Info.failed

	

	
Info.time_of_death

	

	
Info.type

	a String giving the name of the class. Defaults to “info”.
This allows subclassing.

	
Info.origin_id

	the id of the Node that created the info

	
Info.network_id

	the id of the network the info is in

	
Info.contents

	the contents of the info. Must be stored as a String.

Relationships

	
Info.origin

	the Node that created the info.

	
Info.network

	the network the info is in

	
dallinger.models.Info.all_transmissions

	All Transmissions of this Info.

	
dallinger.models.Info.transformation_applied_to

	All Transformations of which this info is the info_in

	
dallinger.models.Info.transformation_whence

	All Transformations of which this info is the info_out

Methods

	
Info.__repr__()

	The string representation of an info.

	
Info.__json__()

	Return json description of a participant.

	
Info._mutated_contents()

	The mutated contents of an info.

When an info is asked to mutate, this method will be executed
in order to determine the contents of the new info created.

The base class function raises an error and so must be overwritten
to be used.

	
Info.fail()

	Fail an info.

Set info.failed to True and time_of_death
to now. Instruct all transmissions and transformations involving this
info to fail.

	
Info.transformations(relationship='all')

	Get all the transformations of this info.

Return a list of transformations involving this info. relationship
can be “parent” (in which case only transformations where the info is
the info_in are returned), “child” (in which case only
transformations where the info is the info_out are returned) or
all (in which case any transformations where the info is the
info_out or the info_in are returned). The default is all

	
Info.transmissions(status='all')

	Get all the transmissions of this info.

status can be all/pending/received.

Transmission

A transmission represents an instance of an Info being sent along a
Vector. Transmissions are not necessarily received when they are sent
(like an email) and must also be received by the Node they are sent to.

	
class dallinger.models.Transmission(vector, info)

	An instance of an Info being sent along a Vector.

Columns

	
Transmission.origin_id

	the id of the Node that sent the transmission

	
Transmission.destination_id

	the id of the Node that the transmission was sent to

	
Transmission.vector_id

	the id of the vector the info was sent along

	
Transmission.network_id

	the id of the network the transmission is in

	
Transmission.info_id

	the id of the info that was transmitted

	
Transmission.receive_time

	the time at which the transmission was received

	
Transmission.status

	the status of the transmission, can be “pending”, which means the
transmission has been sent, but not received; or “received”, which means
the transmission has been sent and received

Relationships

	
Transmission.origin

	the Node that sent the transmission.

	
Transmission.destination

	the Node that the transmission was sent to.

	
Transmission.vector

	the vector the info was sent along.

	
Transmission.network

	the network the transmission is in.

	
Transmission.info

	the info that was transmitted.

Methods

	
Transmission.__repr__()

	The string representation of a transmission.

	
Transmission.__json__()

	Return json description of a participant.

	
Transmission.fail()

	Fail a transmission.

	
Transmission.mark_received()

	Mark a transmission as having been received.

Transformation

A Transformation is a relationship between two Infos. It is similar to
how a Vector indicates a relationship between two Nodes, but whereas a
Vector allows Nodes to Transmit to each other, Transformations don’t
allow Infos to do anything new. Instead they are a form of book-keeping
allowing you to keep track of relationships between various Infos.

	
class dallinger.models.Transformation(info_in, info_out)

	An instance of one info being transformed into another.

Columns

	
Transformation.type

	a String giving the name of the class. Defaults to
“transformation”. This allows subclassing.

	
Transformation.node_id

	the id of the Node that did the transformation.

	
Transformation.network_id

	the id of the network the transformation is in.

	
Transformation.info_in_id

	the id of the info that was transformed.

	
Transformation.info_out_id

	the id of the info produced by the transformation.

Relationships

	
Transformation.node

	the Node that did the transformation.

	
Transformation.network

	the network the transmission is in.

	
Transformation.info_in

	the info that was transformed.

	
Transformation.info_out

	the info produced by the transformation.

Methods

	
Transformation.__repr__()

	The string representation of a transformation.

	
Transformation.__json__()

	Return json description of a participant.

	
Transformation.fail()

	Fail a transformation.

Participant

The Participant object corresponds to a real world participant. Each
person who takes part will have a corresponding entry in the Participant
table. Participants can be associated with Nodes and Questions.

	
class dallinger.models.Participant(recruiter_id, worker_id, assignment_id, hit_id, mode, fingerprint_hash=None)

	An ex silico participant.

Columns

	
Participant.type

	a String giving the name of the class. Defaults to
“participant”. This allows subclassing.

	
Participant.worker_id

	A String, the worker id of the participant.

	
Participant.assignment_id

	A String, the assignment id of the participant.

	
Participant.unique_id

	A String, a concatenation of worker_id
and assignment_id

	
Participant.hit_id

	A String, the id of the hit the participant is working on

	
Participant.mode

	A String, the mode in which Dallinger is running – live,
sandbox or debug.

	
Participant.end_time

	The time at which the participant finished.

	
Participant.base_pay

	The amount the participant was paid for finishing the
experiment.

	
Participant.bonus

	the amount the participant was paid as a bonus.

	
Participant.status

	String representing the current status of the participant, can be –

	working - participant is working

	submitted - participant has submitted their work

	approved - their work has been approved and they have been paid

	rejected - their work has been rejected

	returned - they returned the hit before finishing

	abandoned - they ran out of time

	did_not_attend - the participant finished, but failed the
attention check

	bad_data - the participant finished, but their data was
malformed

	missing_notification - this indicates that Dallinger has
inferred that a Mechanical Turk notification corresponding to this
participant failed to arrive. This is an uncommon, but potentially
serious issue.

Relationships

	
dallinger.models.Participant.all_questions

	All the questions associated with this participant.

	
dallinger.models.Participant.all_nodes

	All the Nodes associated with this participant.

Methods

	
Participant.__json__()

	Return json description of a participant.

	
Participant.fail()

	Fail a participant.

Set failed to True and
time_of_death to now. Instruct all
not-failed nodes associated with the participant to fail.

	
Participant.infos(type=None, failed=False)

	Get all infos created by the participants nodes.

Return a list of infos produced by nodes associated with the
participant. If specified, type filters by class. By default, failed
infos are excluded, to include only failed nodes use failed=True,
for all nodes use failed=all. Note that failed filters the infos,
not the nodes - infos from all nodes (whether failed or not) can be
returned.

	
Participant.nodes(type=None, failed=False)

	Get nodes associated with this participant.

Return a list of nodes associated with the participant. If specified,
type filters by class. By default failed nodes are excluded, to
include only failed nodes use failed=True, for all nodes use
failed=all.

	
Participant.questions(type=None)

	Get questions associated with this participant.

Return a list of questions associated with the participant. If
specified, type filters by class.

Question

A Question is a way to store information associated with a Participant
as opposed to a Node (Infos are made by Nodes, not Participants).
Questions are generally useful for storing responses debriefing
questions etc.

	
class dallinger.models.Question(participant, question, response, number)

	Responses of a participant to debriefing questions.

Columns

	
Question.type

	a String giving the name of the class. Defaults to
“question”. This allows subclassing.

	
Question.participant_id

	the participant who made the response

	
Question.number

	A number identifying the question. e.g., each participant might complete
three questions numbered 1, 2, and 3.

	
Question.question

	the text of the question

	
Question.response

	the participant’s response. Stored as a string.

Relationships

	
Question.participant

	the participant who answered the question

Methods

	
Question.__json__()

	Return json description of a participant.

	
Question.fail()

	Fail a question.

Set failed to True and
time_of_death to now.

Web API

The Dallinger API allows the experiment frontend to communicate with the
backend. Many of these routes correspond to specific functions of
Dallinger’s classes, particularly
dallinger.models.Node. For example,
nodes have a connect method that creates new vectors between nodes
and there is a corresponding connect/ route that allows the frontend
to call this method.

Miscellaneous routes

GET /ad_address/<mode>/<hit_id>

Used to get the address of the experiment on the gunicorn server and to return
participants to Mechanical Turk upon completion of the experiment. This route
is pinged automatically by the function submitAssignment in dallinger2.js.

GET /<directory>/<page>

Returns the html page with the name <page> from the directory called
<directory>.

GET /summary

Returns a summary of the statuses of Participants.

GET /<page>

Returns the html page with the name <page>.

Experiment routes

GET /experiment/<property>

Returns the value of the requested property as a JSON <property>.
The property must be a key in the experiment.public_properties
mapping and be JSON serializable. Experiments have no public properties
by default.

GET /info/<node_id>/<info_id>

Returns a JSON description of the requested info as info.
node_id must be specified to ensure the requesting node has access
to the requested info. Calls experiment method
`info_get_request(node, info).

POST /info/<node_id>

Create an info with its origin set to the specified node. contents
must be passed as data. info_type can be passed as data and will
cause the info to be of the specified type. Also calls experiment method
info_post_request(node, info).

If the specified node is failed then this will fail unless failed is
also passed with the value True. This will create a failed Info on the node.

POST /launch

Initializes the experiment and opens recruitment. This route is
automatically pinged by Dallinger.

GET /network/<network_id>

Returns a JSON description of the requested network as network.

POST /node/<node_id>/connect/<other_node_id>

Create vector(s) between the node and other_node by calling
node.connect(whom=other_node). Direction can be passed as data and
will be forwarded as an argument. Calls experiment method
vector_post_request(node, vectors). Returns a list of JSON
descriptions of the created vectors as vectors.

GET /node/<node_id>/infos

Returns a list of JSON descriptions of the infos created by the node as
infos. Infos are identified by calling node.infos().
info_type can be passed as data and will be forwarded as an
argument. Requesting node and the list of infos are also passed to
experiment method info_get_request(node, infos).

GET /node/<node_id>/neighbors

Returns a list of JSON descriptions of the node’s neighbors as
nodes. Neighbors are identified by calling node.neighbors().
node_type and connection can be passed as data and will be
forwarded as arguments. Requesting node and list of neighbors are also
passed to experiment method node_get_request(node, nodes).

GET /node/<node_id>/received_infos

Returns a list of JSON descriptions of the infos sent to the node as
infos. Infos are identified by calling node.received_infos().
info_type can be passed as data and will be forwarded as an
argument. Requesting node and the list of infos are also passed to
experiment method info_get_request(node, infos).

GET /node/<int:node_id>/transformations

Returns a list of JSON descriptions of all the transformations of a node
identified using node.transformations(). The node id must be
specified in the url. You can also pass transformation_type as data
and it will be forwarded to node.transformations() as the argument
type.

GET /node/<node_id>/transmissions

Returns a list of JSON descriptions of the transmissions sent to/from
the node as transmissions. Transmissions are identified by calling
node.transmissions(). direction and status can be passed as
data and will be forwarded as arguments. Requesting node and the list of
transmissions are also passed to experiment method
transmission_get_request(node, transmissions).

POST /node/<node_id>/transmit

Transmit to another node by calling node.transmit(). The sender’s
node id must be specified in the url. As with node.transmit() the
key parameters are what and to_whom and they should be passed
as data. However, the values these accept are more limited than for
the backend due to the necessity of serialization.

If what and to_whom are not specified they will default to
None. Alternatively you can pass an int (e.g. ‘5’) or a class name
(e.g. Info or Agent). Passing an int will get that info/node,
passing a class name will pass the class. Note that if the class you
are specifying is a custom class it will need to be added to the
dictionary of known_classes in your experiment code.

You may also pass the values property1, property2, property3, property4,
property5 and details. If passed this will fill in the relevant values of the
transmissions created with the values you specified.

The transmitting node and a list of created transmissions are sent to
experiment method transmission_post_request(node, transmissions).
This route returns a list of JSON descriptions of the created
transmissions as transmissions. For example, to transmit all infos
of type Meme to the node with id 10:

reqwest({
 url: "/node/" + my_node_id + "/transmit",
 method: 'post',
 type: 'json',
 data: {
 what: "Meme",
 to_whom: 10,
 },
});

GET /node/<node_id>/vectors

Returns a list of JSON descriptions of vectors connected to the node as
vectors. Vectors are identified by calling node.vectors().
direction and failed can be passed as data and will be forwarded
as arguments. Requesting node and list of vectors are also passed to
experiment method vector_get_request(node, vectors).

POST /node/<participant_id>

Create a node for the specified participant. The route calls the
following experiment methods:
get_network_for_participant(participant),
create_node(network, participant),
add_node_to_network(node, network), and
node_post_request(participant, node). Returns a JSON description of
the created node as node.

POST /notifications
GET /notifications

This is the route to which notifications from AWS are sent. It is also
possible to send your own notifications to this route, thereby
simulating notifications from AWS. Necessary arguments are
Event.1.EventType, which can be AssignmentAccepted,
AssignmentAbandoned, AssignmentReturned or
AssignmentSubmitted, and Event.1.AssignmentId, which is the id
of the relevant assignment. In addition, Dallinger uses a custom event
type of NotificationMissing.

GET /participant/<participant_id>

Returns a JSON description of the requested participant as
participant.

POST /participant/<worker_id>/<hit_id>/<assignment_id>/<mode>

Create a participant. Returns a JSON description of the participant as
participant.

POST /question/<participant_id>

Create a question. question, response and question_id should
be passed as data. Does not return anything.

POST /transformation/<int:node_id>/<int:info_in_id>/<int:info_out_id>

Create a transformation from info_in to info_out at the
specified node. transformation_type can be passed as data and the
transformation will be of that class if it is a known class. Returns a
JSON description of the created transformation.

Communicating With the Server

When an experiment is running, the database and the experiment class
(i.e. the instructions for what to do with the database) will be hosted
on a server, the server is also known as the “back-end”. However,
participants will take part in experiments via an interactive web-site
(the “front-end”). Accordingly for an experiment to proceed there must
be a means of communication between the front and back ends. This is
achieved with routes:

[image:]

Routes are specific web addresses on the server that respond to requests
from the front-end. Routes have direct access to the database, though
most of the time they will pass requests to the experiment which will in
turn access the database. As such, changing the behavior of the
experiment class is the easiest way to create a new experiment. However it is
also possible to change the behavior of the routes or add new routes
entirely.

Requests generally come in two types: “get” requests, which ask for
information from the database, and “post” requests which send new
information to be added to the database. Once a request is complete the
back-end sends a response back to the front-end. Minimally, this will
include a notification that the request was successfully processed, but
often it will also include additional information.

As long as requests are properly formatted and correctly addressed to
routes, the back-end will send the appropriate response. This means that
the front-end could take any form. For instance requests could come from
a standard HTML/CSS/JS webpage, a more sophisticated web-app, or even
from the experiment itself.

Javascript API

Dallinger provides a javascript API to facilitate creating web-based
experiments. All of the dallinger demos use this API to communicate
with the experiment server. The API is defined in the dallinger2.js
script, which is included in the default experiment templates.

The dallinger object

Any page that includes dallinger2.js script will have a dallinger
object added to the window global namespace. This object defines a
number of functions for interacting with Dallinger experiments.

Making requests to experiment routes

dallinger provides functions which can be used to asynchronously
interact with any of the experiment routes described in
Web API:

	
dallinger.get(route, data)

	Convenience method for making an AJAX GET request to a specified
route. Any callbacks provided to the done() method of the returned
Deferred object will be passed the JSON object returned by the the
API route (referred to as data below). Any callbacks provided to the
fail() method of the returned Deferred object will be passed an
instance of AjaxRejection, see Deferred objects.

	Arguments

	
	route (string) – Experiment route, e.g. /info/$nodeId

	data (object) – Optional data to include in request

	Returns

	jQuery.Deferred – See Deferred objects

Examples:

var response = dallinger.get('/participant/1');
// Wait for response and handle data
response.done(function (data) {...});

	
dallinger.post(route, data)

	Convenience method for making an AJAX POST request to a specified
route. Any callbacks provided to the done() method of the returned
Deferred object will be passed the JSON object returned by the the
API route (referred to as data below). Any callbacks provided to the
fail() method of the returned Deferred object will be passed an
instance of AjaxRejection, see Deferred objects.

	Arguments

	
	route (string) – Experiment route, e.g. /info/$nodeId

	data (object) – Optional data to include in request

	Returns

	jQuery.Deferred – See Deferred objects

Examples:

var response = dallinger.post('/info/1', {details: {a: 1}});
// Wait for response and handle data or failure
response.done(function (data) {...}).fail(function (rejection) {...});

The dallinger object also provides functions that make requests
to specific experiment routes:

	
dallinger.createAgent()

	Creates a new experiment Node for the current partcipant.

	Returns

	jQuery.Deferred – See Deferred objects

Examples:

var response = dallinger.createAgent();
// Wait for response
response.done(function (data) {... handle data.node ...});

	
dallinger.createInfo(nodeId, data)

	Creates a new Info object in the experiment database.

	Arguments

	
	nodeId (number) – The id of the participant’s experiment node

	data (Object) – Experimental data (see Info)

	Returns

	jQuery.Deferred – See Deferred objects

Examples:

var response = dallinger.createInfo(1, {details: {a: 1}});
// Wait for response
response.done(function (data) {... handle data.info ...});

	
dallinger.getInfo(nodeId, infoId)

	Get a specific Info object from the experiment database.

	Arguments

	
	nodeId (number) – The id of an experiment node

	infoId (number) – The id of the Info object to be retrieved

	Returns

	jQuery.Deferred – See Deferred objects

Examples:

var response = dallinger.getInfo(1, 1);
// Wait for response
response.done(function (data) {... handle data.info ...});

	
dallinger.getInfos(nodeId)

	Get all Info objects for the specified node.

	Arguments

	
	nodeId (number) – The id of an experiment node.

	Returns

	jQuery.Deferred – See Deferred objects

Examples:

var response = dallinger.getInfos(1, 1);
// Wait for response
response.done(function (data) {... handle data.infos ...});

	
dallinger.getReceivedInfos(nodeId)

	Get all the Info objects a node has been sent and has received.

	Arguments

	
	nodeId (number) – The id of an experiment node.

	Returns

	jQuery.Deferred – See Deferred objects

Examples:

var response = dallinger.getReceivedInfostInfos(1);
// Wait for response
response.done(function (data) {... handle data.infos ...});

	
dallinger.getTransmissions(nodeId, data)

	Get all Transmission objects connected to a node.

	Arguments

	
	nodeId (number) – The id of an experiment node.

	data (Object) – Additional parameters, specifically direction (to/from/all) and status (all/pending/received).

	Returns

	jQuery.Deferred – See Deferred objects

Examples:

var response = dallinger.getTransmissions(1, {direction: "to", status: "all"});
// Wait for response
response.done(function (data) {... handle data.transmissions ...});

Additionally, there is a helper method to handle error responses
from experiment API calls (see Deferred objects below):

	
dallinger.error(rejection)

	Handles experiment errors by requesting feedback from the participant and
attempts to complete the experiment (and compensate participants).

	Arguments

	
	rejection (dallinger.AjaxRejection) – information about the AJAX error.

Examples:

// Let dallinger handle the error
dallinger.createAgent().fail(dallinger.error);

// Custom handling, then request feedback and complete if possible
dallinger.getInfo(info).fail(function (rejection) {
 ... handle rejection data ...
 dallinger.error(rejection);
});

Deferred objects

All of the above functions make use of jQuery.Deferred [https://api.jquery.com/jquery.deferred/],
and return Deferred objects. These Deferred objects provide the following
methods to facilitate handling asynchronous responses once they’ve completed:

	.done(callback): Provide a callback to handle data from a successful
response

	.fail(fail_callback): Provide a callback to handle error responses

	.then(callback[, fail_callback, progress_callback]): Provide
callbacks to handle successes, failures, and progress updates.

The fail_callback function will be passed a dallinger.AjaxRejection object which
includes detailed information about the error. Unexpected errors should be handled
by calling the dallinger.error() method with the AjaxRejection object.

Experiment Initialization and Completion

In addition to the request functions above, there are a few functions that are
used by the default experiment templates to setup and complete an experiment.
If you are writing a highly customized experiment, you may need to use
these explicitly:

	
dallinger.createParticipant()

	Create a new experiment Participant by making a POST request to
the experiment /participant/ route. If the experiment requires a
quorum, the response will not resolve until the quorum is met. If the
participant is requested after the quorum has already been reached, the
dallinger.skip_experiment flag will be set and the experiment will
be skipped.

This method is called automatically by the default waiting room page.

	Returns

	jQuery.Deferred – See Deferred objects

	
dallinger.hasAdBlocker(callback)

	Determine if the user has an ad blocker installed. If an ad blocker is detected
the callback will be executed asynchronously after a small delay.

This method is called automatically from the experiment default template.

	Arguments

	
	callback (function) – a function, with no arguments, to call if an ad blocker is running.

	
dallinger.submitAssignment()

	Notify the experiment that the participant’s assignment is complete.
Performs a GET request to the experiment’s /worker_complete route.

	Returns

	jQuery.Deferred – See Deferred objects

Examples:

// Mark the assignment complete and perform a custom function when successful
result = dallinger.submitAssignment();
result.done(function (data) {... handle ``data.status`` ...}).fail(
 dallinger.error
);

	
dallinger.submitQuestionnaire(name="questionnaire")

	Submits a Question object to the experiment server.
This method is called automatically from the default questionnaire page.

	Arguments

	
	name (string) – optional questionnaire name

	
dallinger.waitForQuorum()

	Waits for a WebSocket message indicating that quorum has been reached.

This method is called automatically within createParticipant() and the
default waiting room page.

	Returns

	jQuery.Deferred – See Deferred objects

Helper functions and properties

Finally, there are a few miscellaneous utility functions and properties
which are useful when writing a custom experiment:

	
dallinger.getUrlParameter(sParam)

	Returns a url query string value given the parameter name.

	Arguments

	
	sParam (string) – name of url parameter

	Returns

	string|boolean – the parameter value if available; true if parameter is in the url but has no value;

Examples:

// Given a url with ``?param1=aaa¶m2``, the following returns "aaa"
dallinger.getUrlParameter("param1");
// this returns true
dallinger.getUrlParameter("param2");
// and this returns null
dallinger.getUrlParameter("param3");

	
dallinger.goToPage(page)

	Advance the participant to a given html page;
the participant_id will be included in the url query string.

	Arguments

	
	page (string) – Name of page to load, the .html extension should not be included.

	
dallinger.identity

	dallinger.identity provides information about the participant.
It has the following string properties:

recruiter - Type of recruiter

hitId - MTurk HIT Id

workerId - MTurk Worker Id

assignmentId - MTurk Assignment Id

mode - Dallinger experiment mode

participantId - Dallinger participant Id

Rewarding participants

It is common for experiments to remunerate participants in two ways, a base payment for participation and a bonus for their particular performance. Payments are managed through the recruiter being used, so it is important to consider any differences if changing the recruiter to ensure that there isn’t an inadvertent change to the mechanics of the experiment.

Base payment

The base payment is controlled by the base_payment configuration variable, which is a number of US dollars. This can be set as any configuration value and is accessed directly by the recruiter rather than being mediated through the experiment.

For example, to deploy an experiment using a specific payout of 4.99 USD the following command line invocation can be used:

base_payment=4.99 dallinger deploy

Bonus payment

The bonus payment is more complex, as it is set by the experiment class in response to an individual participant completing the experiment. In order to keep the overall payment amounts flexible it is strongly recommended to parameterize this calculation.

There are many strategies for awarding bonuses, some examples of which are documented below. In each case, bonus(self, participant) is a reference to bonus() in your experiment class.

Time based bonuses

This pays the user a bonus based on the amount of time they spent on the experiment. While this helps to pay users fairly for their time it also incentivises slow performance of the task. Without a maximum being set or adequate attention checks it may be possible for participants to receive a large bonus by ignoring the experiment for some time.

This method is a good fit if there is a lot of variation between how long it takes people to complete a task while putting in the same effort, for example if there is a reliance on waiting rooms.

def bonus(self, participant):
 """Give the participant a bonus for waiting."""
 elapsed_time = participant.end_time - participant.creation_time
 # keep to two decimal points to represent cents
 payout = round(
 (elapsed_time.total_seconds() / 3600.0) * config.get('payment_per_hour', 5.00),
 2
)
 return min(payout, config.get('max_bonus_amount', 10000.00))

This expects two configuration parameters, payment_per_hour and max_bonus_amount in addition to the base_payment value.

The bonus is then calculated as the number of hours between the participant being created and them finishing the experiment, at payment_per_hour dollars per hour, with a maximum of max_bonus_amount.

Performance based bonuses

This pays the user based on how well they perform in the experiment. It is very important that this calculation be performed by the Experiment class rather than the front-end Javascript, as otherwise unscrupulous users could specify arbitrary rewards.

The bonus function should be kept as simple as possible, delegating to other functions for readability.

For example, the Bartlett (1932), stories demo involves showing participants a piece of text and asking them to reproduce it from memory. A simple reward function could be as follows:

def get_submitted_text(self, participant):
 """The text a given participant submitted"""
 node = participant.nodes()[0]
 return node.infos()[0].contents

def get_read_text(self, participant):
 """The text that a given participant was shown to memorize"""
 node = participant.nodes()[0]
 incoming = node.all_incoming_vectors[0]
 parent_node = incoming.origin
 return parent_node.infos()[0].contents

def text_similarity(self, one, two):
 """Return a measure of the similarity between two texts"""
 try:
 from Levenshtein import ratio
 except ImportError:
 from difflib import SequenceMatcher
 ratio = lambda x, y: SequenceMatcher(None, x, y).ratio()
 return ratio(one, two)

def bonus(self, participant):
 performance = self.text_similarity(
 self.get_submitted_text(participant),
 self.get_read_text(participant)
)
 payout = round(config.get('bonus_amount', 0.00) * performance, 2)
 return min(payout, config.get('max_bonus_amount', 10000.00))

The majority of the work in determining how a user has performed is handled by helper functions, to avoid confusing the logic of the bonus function, which is kept easy to read.

There is a secondary advantage, in that the performance helper functions can be used by other parts of the code. The main place these can be useful is the attention_check function, which is used to determine if a user was actively participating in the experiment or not.

In this example, it is possible that users will ‘cheat’ by copy/pasting the text they were supposed to remember, and therefore get the full reward. Alternatively, they may simply submit without trying, making
the rest of the run useless. Although we wouldn’t want to award the user a bonus for either of these, it’s more appropriate for this to fail the attention_check, as the participant will be automatically replaced.

That may look like this:

def attention_check(self, participant):
 performance = self.text_similarity(
 self.get_submitted_text(participant),
 self.get_read_text(participant)
)
 return (
 config.get('min_expected_performance', 0.1)
 <= performance <=
 config.get('max_expected_performance', 0.8)
)

Javascript-only experiments

Sometimes experimenters may wish to convert an existing Javascript and HTML experiment to run within the Dallinger framework. Such games rely on logic entirely running in the user’s browser, rather than instructions from the Dallinger Experiment class. However, code running in the user’s browser cannot be trusted to determine how much the user should be paid, as it is open to manipulation through debugging tools.

Note

It might seem unlikely that users would bother to cheat, but it is quite easy for technically proficient users to do so if they choose, and the temptation of changing their payout may be too much to resist.

In order to integrate with Dallinger, the experiment must use the dallinger2.js function createInfo function to send its current state to the server. This is what allows analysis of the user’s performance later, so it’s important to send as much information as possible.

The included 2048 demo is an example of this type of experiment. It shows a popular javascript game with no interaction with the server or other players. Tiles in the grid have numbers associated with them, which can be combined to gain higher numbered tiles. If the experimenter wanted to give a bonus based on the highest tile the user reached there is a strong incentive for the player to try and cheat and therefore receive a much larger payout than expected.

In this case, the data is sent to the server as:

if (moved) {
 this.addRandomTile();

 dallinger.createInfo(my_node_id, {
 contents: JSON.stringify(game.serialize()),
 info_type: "State"
 });
};

The experiment can then look at the latest state that was sent in order to find the highest card a user found.

def performance(self, participant):
 latest_info = participant.infos()[0]
 grid_state = json.loads(latest_info.contents)
 values = [
 cell['value']
 for row in grid_state['grid']['cells']
 for cell in row
]
 return min(2048.0 / max(values), 1.0)

def bonus(self, participant):
 performance = self.performance(participant)
 payout = round(config.get('bonus_amount', 0.00) * performance, 2)
 return min(payout, config.get('max_bonus_amount', 10000.00))

However, the states the experiment is looking at are still supplied by the user’s browser, so although cheating would be more complex than simply changing a score it is still possible for them to cause a fraudulent state to be sent.

For this reason, we need to implement the game’s logic in Python so that the attention_check can check that the user’s play history is consistent. Again, this has the advantage that a user who cheats is removed from the experiment rather than simply receiving a diminished reward.

This may look something like:

def is_possible_transition(self, old, new):
 """Check if it is possible to get from the old state to the new state in one step"""
 ...
 return True

def attention_check(self, participant):
 """Find all pairs of grid states and check they are all legitimate successors"""
 states = []
 for info in reversed(participant.infos()):
 states.append(json.loads(info.contents))
 pairs = zip(states, states[1:])
 return all(self.is_possible_transition(old, new) for (old, new) in pairs)

where is_possible_transition would be a rather complex function implementing the game’s rules.

Note: In all these cases, it is strongly recommended to set a maximum bonus and return the minimum value between the bonus calculated and the maximum bonus, ensuring that no bugs or unexpected cheating cause a larger bonus to be awarded than expected.

Waiting rooms

By default, Dallinger begins an experiment as soon as a user agrees to
the informed consent form and has read the instructions. However, some
experiment designs require multiple users to be synchronized.

For this reason, Dallinger includes a waiting room implementation, which
will hold users between instructions and the experiment until a certain
number are ready.

Using the waiting room

To use the waiting room, users must first be directed into it rather than
the experiment.

Your instructions.html should call dallinger.goToPage('waiting') and should
not call dallinger.createParticipant.

You will also need to define how many users should be held together before
progressing. This is done through the quorum global variable. The waiting
room will call a javascript function called getQuorum which should set
quorum to be the appropriate value for your experiment.

Writing bots

When you run an experiment using the bot recruiter,
it will look for a class named Bot in your experiment.py module.

The Bot class should typically be a subclass of either
BotBase (for bots that interact with the
experiment by controlling a real browser using selenium) or
HighPerformanceBotBase (for bots that
interact with the experiment server directly via HTTP or websockets).

The interaction of the base bots with the experiment takes place in several phases:

	Signup (including creating a Participant)

	Participation in the experiment

	Signoff (including completing the questionnaire)

	Recording completion (complete or failed)

To build a bot, you will definitely need to implement the participate method
which will be called once the bot has navigated to the main experiment page.
If the structure of your ad, consent, instructions or questionnaire pages
differs significantly from the demo experiments, you may need to override other
methods too.

High-performance bots

The HighPerformanceBotBase can be used as a basis for a bot that
interacts with the experiment server directly over HTTP rather than using a real browser.
This scales better than using Selenium bots, but requires expressing the bot’s
behavior in terms of HTTP requests rather than in terms of DOM interactions.

For a guide to Dallinger’s web API, see Web API.

For an example of a high-performance bot implementation, see the Griduniverse bots [https://github.com/Dallinger/Griduniverse/blob/master/dlgr/griduniverse/bots.py].
These bots interact primarily via websockets rather than HTTP.

API documentation

	
class dallinger.bots.HighPerformanceBotBase(URL, assignment_id='', worker_id='', participant_id='', hit_id='')

	A base class for bots that do not interact using a real browser.

Instead, this kind of bot makes requests directly to the experiment server.

	
complete_experiment(status)

	Record worker completion status to the experiment server.

This is done using a GET request to the /worker_complete
or /worker_failed endpoints.

	
complete_questionnaire()

	Complete the standard debriefing form.

Answers the questions in the base questionnaire.

	
driver

	Returns a Selenium WebDriver instance of the type requested in the
configuration.

	
on_signup(data)

	Take any needed action on response from /participant call.

	
run_experiment()

	Runs the phases of interacting with the experiment
including signup, participation, signoff, and recording completion.

	
sign_off()

	Submit questionnaire and finish.

This is done using a POST request to the /question/ endpoint.

	
sign_up()

	Signs up a participant for the experiment.

This is done using a POST request to the /participant/ endpoint.

	
subscribe_to_quorum_channel()

	In case the experiment enforces a quorum, listen for notifications
before creating Partipant objects.

Selenium bots

The BotBase provides a basis for a bot that interacts with an experiment using
Selenium, which means that a separate, real browser session is controlled
by each bot. This approach does not scale very well because there is a lot of
overhead to running a browser, but it does allow for interacting with the
experiment in a way similar to real participants.

By default, Selenium will try to run PhantomJS, a headless browser meant for scripting.
However, it also supports using Firefox and Chrome through configuration variables.

webdriver_type = firefox

We recommend using Firefox when writing bots, as it allows you to visually see
its output and allows you to attach the development console directly to the
bot’s browser session.

For an example of a selenium bot implementation, see the Bartlett1932 bots [https://github.com/Dallinger/Dallinger/blob/master/demos/dlgr/demos/bartlett1932/experiment.py].

For documentation of the Python Selenium WebDriver API, see Selenium with Python [http://selenium-python.readthedocs.io/index.html].

API documentation

	
class dallinger.bots.BotBase(URL, assignment_id='', worker_id='', participant_id='', hit_id='')

	A base class for bots that works with the built-in demos.

This kind of bot uses Selenium to interact with the experiment
using a real browser.

	
complete_experiment(status)

	Sends worker status (‘worker_complete’ or ‘worker_failed’)
to the experiment server.

	
complete_questionnaire()

	Complete the standard debriefing form.

Answers the questions in the base questionnaire.

	
driver

	Returns a Selenium WebDriver instance of the type requested in the
configuration.

	
participate()

	Participate in the experiment.

This method must be implemented by subclasses of BotBase.

	
run_experiment()

	Sign up, run the participate method, then sign off and close
the driver.

	
sign_off()

	Submit questionnaire and finish.

This uses Selenium to click the submit button on the questionnaire
and return to the original window.

	
sign_up()

	Accept HIT, give consent and start experiment.

This uses Selenium to click through buttons on the ad,
consent, and instruction pages.

Scaling Selenium bots

For example you may want to run a dedicated computer on your lab network to host
bots, without slowing down experimenter computers. It is recommended that you
run Selenium in a hub configuration, as a single Selenium instance will limit
the number of concurrent sessions.

You can also provide a URL to a Selenium WebDriver instance using the
webdriver_url configuration setting. This is required if you’re running
Selenium in a hub configuration. The hub does not need to be on the same computer
as Dallinger, but it does need to be able to access the computer running
Dallinger directly by its IP address.

On Apple macOS, we recommend using Homebrew to install and run selenium, using:

brew install selenium-server-standalone
selenium-server -port 4444

On other platforms, download the latest selenium-server-standalone.jar file
from SeleniumHQ [http://www.seleniumhq.org/download/] and run a hub using:

java -jar selenium-server-standalone-3.3.1.jar -role hub

and attach multiple nodes by running:

java -jar selenium-server-standalone-3.3.1.jar -role node -hub http://hubcomputer.example.com:4444/grid/register

These nodes may be on other computers on the local network or on the same host
machine. If they are on the same host you will need to add -port 4446 (for
some port number) such that each Selenium node on the same server is listening
on a different port.

You will also need to set up the browser interfaces on each computer that’s running
a node. This requires being able to run the browser and having the correct driver
available in the system path, so the Selenium server can run it.

We recommend using Chrome when running large numbers of bots, as it is more
feature-complete than PhantomJS but with better performance at scale than Firefox. It
is best to run at most three Firefox sessions on commodity hardware, so for best
results 16 bots should be run over 6 Selenium servers. This will depend on how
processor intensive your experiment is. It may be possible to run more sessions
without performance degradation.

Extra Configuration

To create a new experiment-specific configuration variable, define
extra_parameters in your experiment.py file:

def extra_parameters():
 config.register('n', int, [], False)

Here, 'n' is a string with the name of the parameter, int is its type,
[] is a list of synonyms that be used to access the same parameter, and
False is a boolean signifying that this configuration parameter is not
sensitive and can be saved in plain text. Once defined in this way, a
parameter can be used anywhere that built-in parameters are used.

Recruitment

A recruiter is a program that takes charge of recruiting participants for
an experiment. Dallinger’s main recruiter for deployed experiments uses
Amazon Mechanical Turk [https://www.mturk.com], a “crowdsourcing
marketplace” for automating the process of signing up experiment
participants, obtaining their consent, arranging them in groups to perform
the experiment, communicating with them, and paying them for their
participation.

A concept directly related to MTurk recruitment is qualifications. A
qualification is a participant attribute, like location or approval rate,
that you can use to decide if a particular participant should be included or
excluded from an experiment. As we will see below, Dallinger uses
qualifications to configure an experiment for participant recruitment.

Recruitment Planning

An experimenter needs to consider recruitment from the initial stages of
planning an experiment. How many participants are needed? Do they need to
interact with each other? Is the interaction synchronous or asynchronous?
What happens when we over-recruit participants? Dallinger allows a good
deal of flexibility to tweak participant recruitment, but it needs to be
well planned in advance.

The experimenter also has to take into account the time and effort
required of participants to participate in research. If signing up the
correct number of participants requires some of them to wait for a long
time, for instance, they might not stay around to finish, or may do so one
time, then opt out of any further experiments by the same experimenter.

Configuration Parameters

For a specific experiment, the experimenter will want a given number of
participants that can be trusted as much as possible to follow the
instructions and complete the experiment. Dallinger’s MTurk recruiter
supports various configuration parameters to let the experimenter achieve
this.

One of the key configuration parameters related to recruitment is the
auto_recruit parameter. Recruitment will not start automatically
unless this is set to true. There are many other recruitment parameters,
though.

For example, the following configuration is defined by GridUniverse [https://github.com/Dallinger/Griduniverse], a
parameterized space of games for the study of human social behavior:

[HIT Configuration]
title = Griduniverse
description = Play a game
keywords = Psychology, game, play
base_payment = 1.00
lifetime = 24
duration = 0.1
us_only = true
approve_requirement = 95
group_name = Griduniverse

The title, description, and keywords are important, because this
is what a potential participant will see when deciding whether to
participate in an experiment or not.

base_payment is how much a participant will be paid for their
participation. This depends more on the experimenter’s organization and
policies than on the experiment itself, although an exceptionally hard to
complete experiment might benefit from a higher payment figure.

lifetime is how many hours to keep the experiment “open” for MTurk users.
An experiment with many participants that are recruited sequentially or
are not required to interact with each other, might benefit from a larger
window.

Once a participant is looking at your experiment sign on page, the
duration parameter controls how long it will wait for participation
confirmation before timing out. This prevents undecided or forgetful users
from causing recruitment problems.

Dallinger is being developed in the US, and for the time being most users
are located there. Many experiments can be run without taking into account
the participant’s nationality, but in some cases, experimenters may need to
restrict participation to US-only participants, The us_only parameter
allows this.

A remote experiment obviously would benefit from having very trustworthy
participants, so that experimenters can be reasonably sure that the
experiment will be completed and the instructions are followed to the best
of the participant’s ability. MTurk keeps track of how many experiments a
participant has been in, and what percentage of those are approved by the
experimenter. The approve_requirement parameter takes a number from 1 to
100, representing the percentage of approved experiments that a participant
must have to be able to participate in the experiment.

The group_name parameter is used to assign a named qualification to
participants that complete an experiment. You can use this later to find out
if a possible participant has already completed the experiment under the
same group name. Note that it’s not enough to set this parameter to have the
qualification saved. It’s necessary to also set the assign_qualifications
parameter to true as well.

Finally, the qualification_blacklist parameter can be used to filter out
potential participants and prevent them from even viewing the experiment
sign-on page. It takes a comma-separated list of qualification names to
avoid. In order to prevent participant from repeating an experiment or group,
you can set this parameter to an experiment ID or group name, and set
assign_qualifications to true.

Waiting Rooms

One other thing that affects recruitment is the use of a waiting room. Waiting rooms are used when an experiment requires
participants to be synchronized. Participants are kept in the “room” until
enough of them have signed up and are ready to start. Experimenters can set
the quorum in the experiment code.

Recruitment Handling in Experiment Code

In addition to the previously mentioned configuration parameters, Dallinger
experiment creators can use their experiment code to further affect
recruitment. There are a number of basic recruitment attributes that can be
set on experiment initialization, and recruitment can be further affected by
calling specific methods during experiment runtime.

There are specific points in an experiment code where recruitment is usually
affected. To show how you can set up recruitment for your experiment, we
will use GridUniverse code as a guide. The methods discussed here are part
of the experiment base class, so it is not required to implement them in
your experiment, but most experiments need at least the configure and
create_network methods.

def configure(self):
 super(Griduniverse, self).configure()
 self.num_participants = config.get('max_participants', 3)
 self.quorum = self.num_participants
 self.initial_recruitment_size = config.get('num_recruits',
 self.num_participants)

The configure method is called during experiment initialization, and is
where experiment specific configuration takes place. Many times,
configuration parameters from the experiment config.txt file are used
here.

GridUniverse defines max_participants and num_recruits parameters.
They are used in this method to set experiment.num_participants,
experiment.quorum and experiment.initial_recruitment_size. The first
of these is only used in GridUniverse code, so we can ignore it.

In its configure method, GridUniverse sets experiment_quorum to be
the same as the configured number of participants. This means that the
participants will be held in the waiting room until all participants have
been recruited. Other experiment designs might not need all of the
participants to be ready at the same time, but only a fraction of them. This
attribute only applies to experiments that use a waiting room. The default
value for experiment.quorum is zero (no waiting room).

experiment.initial_recruitment_size is the number of participants
required at the beginning of the experiment. This is used during the
experiment’s launch phase to start the recruitment process.

def create_network(self):
 """Create a new network by reading the configuration file."""
 class_ = getattr(
 dallinger.networks,
 self.network_factory
)
 return class_(max_size=self.num_participants + 1)

The create_network method is where the experiment network is created, usually setting the initial number of users to
the number defined in experiment.initial_recruitment_size. Most
experiments will have a specific network defined in their code, and call
that network explicitly. In the case of GridUniverse, the experiment allows
the use of any network defined by Dallinger, which is passed in as a
configuration parameter. Regardless of the selected network class, it’s
called with max_size set to the number of participants configured, plus
one.

A simpler experiment might use something like this instead:

def create_network(self):
 return Chain(max_size=self.initial_recruitment_size)

Over-recruitment

It’s common for recruited participants to join and leave an experiment
before it starts. This is difficult in experiments where multiple
participants are needed in order to start the experiment. To prevent this
from disrupting an experiment, experimenters can over-recruit participants
to ensure that they have the correct amount of participants at the start of
the experiment. The participants who are over-recruited, but not needed for
the experiment, still receive a base payout and are sent to the end of the
experiment.

Over-recruitment occurs when an experiment has a quorum other than zero
and the number of participants in the waiting room is larger than the
quorum. As mentioned above, because users in the waiting room have already
been recruited, Dallinger has to treat them as having completed the
experiment, and they have to be paid.

There are a couple of strategies that can be used to limit over-recruitment.
It is best for an experiment to close recruitment as soon as possible after
the intended quorum is full. GridUinverse overrides the experiment’s
create_node method to do this.

def create_node(self, participant, network):
 try:
 return dallinger.models.Node(
 network=network, participant=participant
)
 finally:
 if not self.networks(full=False):
 # If there are no spaces left in our networks we can close
 # recruitment, to alleviate problems of over-recruitment
 self.recruiter().close_recruitment()

This method is called when a participant is added, so GridUniverse uses it
to try to detect as soon as possible if the experiment networks are full
(all participants are in). It does this by getting all networks that are
not full. If there are none, it calls its recruiter’s close_recruitment
method.

GridUniverse also overrides the experiment’s recruit method to
unconditionally close recruitment if it is called. This method is called
whenever a participant successfully completes an experiment. Since
GridUniverse uses a quorum and never requires adding new participants after
experiment start, it’s safe to just go ahead and close recruitment here.

def recruit(self):
 self.recruiter().close_recruitment()

Private repositories

It is often useful to add a dependency on a private code respository
hosted by a service like GitHub, GitLab, or Bitbucket.
As with PyPi packages, these dependencies should be specified
in the requirements.txt file, using the following format:

-e git+ssh://git@github.com/my-organization/some-git-dependency.git#egg=some-git-dependency

The portion after egg= serves to specify the package name.

It can be useful to hard-code a specific version of the codebase into the URL.
You can do this by specifying a particular commit hash, tag, or branch.

Commit hash
-e git+ssh://git@github.com/my-organization/some-git-dependency.git@000b14389171a9f0d7d713466b32bc649b0bed8e#egg=some-git-dependency

Branch name
-e git+ssh://git@github.com/my-organization/some-git-dependency.git@nov-deploy#egg=some-git-dependency

Release
-e git+ssh://git@github.com/my-organization/some-git-dependency.git@releases/tag/v3.7.1#egg=some-git-dependency

If your repository is private then you will need to provide the credentials to access it.
We recommend creating a personal access token (PAT) for your GitHub account or equivalent
with read-only permissions
(see e.g. the
GitHub documentation [https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line]
for instructions),
and including it in an HTTPS repository link as follows:

-e git+https://your_pat_here@gitlab.com/my-organization/some-git-dependency.git#egg=some-git-dependency

Theoretically one could also pass this PAT as an environment variable.

-e git+https://${GITLAB_PAT}@gitlab.com/my-organization/some-git-dependency.git#egg=some-git-dependency

However, this would require the environment variable to be set already for the Heroku app,
which would require modifying the existing Dallinger deploy routine
in a way that is not yet explicitly supported by the Dallinger API.

Running the tests

If you push a commit to a branch in the Dallinger organization on GitHub,
or open a pull request from your own fork, Dallinger’s automated code tests
will be run on Travis [https://travis-ci.org/].

Current build status: [image: status] [https://travis-ci.org/Dallinger/Dallinger]

The tests include:

	Making sure that a source distribution of the Python package can be created.

	Running flake8 [https://flake8.readthedocs.io] to make sure Python code
conforms to the PEP 8 [https://www.python.org/dev/peps/pep-0008/] style guide.

	Running the tests for the Python code using pytest [http://doc.pytest.org/]
and making sure they pass in Python 2.7 and 3.6.

	Making sure that code coverage [https://coverage.readthedocs.io/]
for the Python code is above the desired threshold.

	Making sure the docs build without error.

If you see ImportErrors related to demo packages, this most likely means you
have not installed the dlgr.demos sub-package. See the
Dallinger development installation instructions for details.

Amazon Mechanical Turk Integration Tests

You can also run all these tests locally, with some additional requirements:

	The Amazon Web Services credentials set in .dallingerconfig must correspond
to a valid MTurk Sandbox
Requester [https://requester.mturk.com/mturk/beginsignin] account.

	Some tests require access to an MTurk Sandbox
Worker [https://workersandbox.mturk.com/mturk/welcome] account, so you
should create this account (probably using the same AWS account as above).

	The Worker ID from the Worker account (visible on the
dashboard [https://workersandbox.mturk.com/mturk/dashboard]) needs to be
set in tests/config.py, which should be created by making a copy of
tests/config.py.in before setting the value. tests/config.py is
excluded from version control, so your Id will not be pushed to a remote
repository.

Commands

Tests

You can run all tests locally, simply by running:

tox

To run just the fastest Python tests (it’s recommended to run these tests first):

pytest

To run include slower Python tests:

pytest --runslow

To run the Python tests excluding those that interact with Amazon Mechanical
Turk, run:

pytest -m "not mturk"

To run all tests except those that require a MTurk Worker ID, run:

pytest -m "not mturkworker"

To run the complete, comprehensive suite of tests which interact Mechanical Turk,
add the mturkfull option when running the tests:

pytest --mturkfull --runslow

Linting

To run black:

black dallinger

To run flake8:

flake8

Contributing to Dallinger Documentation

Dallinger’s documentation is written using reStructuredText markup, and transformed into
HTML markup using Sphinx [https://www.sphinx-doc.org/en/master/].

The formal narrative documentation source lives in .rst files inside dallinger/docs/source/.
These are the files that should be edited (or added to) when updating documentation. The build
directory holds the output generated by Sphinx, and should not be edited directly.

Sphinx also builds automatic documentation for Python and Javascript code based on inline
docstring and jsdoc in source files.

Building Documentation Locally

Sphinx and reStructuredText can be tricky to get right without some trial and error, so you
will probably want to build documentation locally after making additions or changes, so you
can preview the generated, styled HTML. There are two ways to do this.

Tox (aka “The Big Hammer”)

Running tox to build documentation will download the current release of Dallinger,
install all dependencies, and build documentation based on this. If you’re working on a
proposed change, this is probably not what you want to do:

tox -e docs

Building from Your Current Local Source

To build your working copy of the documentation using your already installed development
verison of Dallinger, you’ll first need to run yarn to install Javascript dependencies
from npm. From the root of the main Dallinger directory:

yarn

You can then generate the documentation:

make -C docs html

If you’ve made syntactical errors in your reStructuredText, you’ll get warnings and/or
errors:

/Users/you/Dallinger/docs/source/running_the_tests.rst:84: WARNING: Title underline too short.

When complete, you can open the root index.html page in a web browser:

open docs/build/html/index.html

Releasing a new version of Dallinger

The Dallinger branch master features the latest official release for 3.X.X, and 2.x-maintenance features the latest official 2.X.X release.

1. After you’ve merged the changes you want into both master and 2.x-maintenance, the branches are ready for the version upgrade. We’re using semantic versioning, so there are three parts to the version number. when making a release you need to decide which parts should get bumped, which determines what command you give to bumpversion. major is for breaking changes, minor for features, patch for bug fixes.
Example:
Running bumpversion patch, which will change every mention of the current version in the codebase and increase it by 0.0.1.

	Log your updates by editing the CHANGELOG.md, where you’ll link to your version’s tree using: https://github.com/dallinger/dallinger/tree/vX.X.X. Mark the PR with the release label.

	Merge this release with the commit “Release version X.X.X.”

	After that’s merged, you’ll want to tag the merge commit with git tag vX.X.X and do git push origin –tags. PyPI releases versions based on the tags via .travis.yml.

	If you are releasing an upgrade to an old version, revert the PyPI change and make it show the highest version number. We do this because PyPI shows the last updated version to be the latest version which may be incorrect.

Acknowledgments

Dallinger is sponsored by the Defense Advanced Research Projects Agency through
the NGS2 program. The contents of this documentation does not necessarily
reflect the position or the policy of the Government and no official
endorsement should be inferred.

Dallinger’s predecessor, Wallace, was supported in part by the National Science
Foundation through grants 1456709 and 1408652.

Dallinger’s incubator

Dallinger was one of the first scientists to perform experimental evolution. See his Wikipedia article for the specifics of his incubation experiments [https://en.wikipedia.org/wiki/William_Dallinger].

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dallinger	

 	
 	
 dallinger.experiment	

 	
 	
 dallinger.models	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (dallinger.experiment.Experiment method)

 	__json__() (dallinger.models.Info method)

 	(dallinger.models.Network method)

 	(dallinger.models.Node method)

 	(dallinger.models.Participant method)

 	(dallinger.models.Question method)

 	(dallinger.models.Transformation method)

 	(dallinger.models.Transmission method)

 	(dallinger.models.Vector method)

 	
 	__repr__() (dallinger.models.Info method)

 	(dallinger.models.Network method)

 	(dallinger.models.Node method)

 	(dallinger.models.Transformation method)

 	(dallinger.models.Transmission method)

 	(dallinger.models.Vector method)

 	_mutated_contents() (dallinger.models.Info method)

 	_to_whom() (dallinger.models.Node method)

 	_what() (dallinger.models.Node method)

A

 	
 	add_node_to_network() (dallinger.experiment.Experiment method)

 	all_incoming_transmissions (dallinger.models.dallinger.models.Node attribute)

 	all_incoming_vectors (dallinger.models.dallinger.models.Node attribute)

 	all_infos (dallinger.models.dallinger.models.Network attribute)

 	(dallinger.models.dallinger.models.Node attribute)

 	all_nodes (dallinger.models.dallinger.models.Network attribute)

 	(dallinger.models.dallinger.models.Participant attribute)

 	all_outgoing_transmissions (dallinger.models.dallinger.models.Node attribute)

 	all_outgoing_vectors (dallinger.models.dallinger.models.Node attribute)

 	
 	all_questions (dallinger.models.dallinger.models.Participant attribute)

 	all_transmissions (dallinger.models.dallinger.models.Info attribute)

 	(dallinger.models.dallinger.models.Vector attribute)

 	all_vectors (dallinger.models.dallinger.models.Network attribute)

 	assignment_abandoned() (dallinger.experiment.Experiment method)

 	assignment_id (dallinger.models.Participant attribute)

 	assignment_reassigned() (dallinger.experiment.Experiment method)

 	assignment_returned() (dallinger.experiment.Experiment method)

 	attention_check() (dallinger.experiment.Experiment method)

 	attention_check_failed() (dallinger.experiment.Experiment method)

B

 	
 	base_pay (dallinger.models.Participant attribute)

 	bonus (dallinger.models.Participant attribute)

 	
 	bonus() (dallinger.experiment.Experiment method)

 	bonus_reason() (dallinger.experiment.Experiment method)

 	BotBase (class in dallinger.bots)

C

 	
 	calculate_full() (dallinger.models.Network method)

 	collect() (dallinger.experiment.Experiment method)

 	complete_experiment() (dallinger.bots.BotBase method)

 	(dallinger.bots.HighPerformanceBotBase method)

 	complete_questionnaire() (dallinger.bots.BotBase method)

 	(dallinger.bots.HighPerformanceBotBase method)

 	
 	connect() (dallinger.models.Node method)

 	contents (dallinger.models.Info attribute)

 	create_network() (dallinger.experiment.Experiment method)

 	create_node() (dallinger.experiment.Experiment method)

 	creation_time (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

D

 	
 	dallinger.createAgent() (dallinger method)

 	dallinger.createInfo() (dallinger method)

 	dallinger.createParticipant() (dallinger method)

 	dallinger.error() (dallinger method)

 	dallinger.experiment (module)

 	dallinger.get() (dallinger method)

 	dallinger.getInfo() (dallinger method)

 	dallinger.getInfos() (dallinger method)

 	dallinger.getReceivedInfos() (dallinger method)

 	dallinger.getTransmissions() (dallinger method)

 	dallinger.getUrlParameter() (dallinger method)

 	dallinger.goToPage() (dallinger method)

 	dallinger.hasAdBlocker() (dallinger method)

 	dallinger.identity (dallinger attribute)

 	
 	dallinger.models (module)

 	dallinger.post() (dallinger method)

 	dallinger.submitAssignment() (dallinger method)

 	dallinger.submitQuestionnaire() (dallinger method)

 	dallinger.waitForQuorum() (dallinger method)

 	data_check() (dallinger.experiment.Experiment method)

 	data_check_failed() (dallinger.experiment.Experiment method)

 	destination (dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

 	destination_id (dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

 	details (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	driver (dallinger.bots.BotBase attribute)

 	(dallinger.bots.HighPerformanceBotBase attribute)

E

 	
 	end_time (dallinger.models.Participant attribute)

 	events_for_replay() (dallinger.experiment.Experiment method)

 	
 	Experiment (class in dallinger.experiment)

 	experiment_repeats (dallinger.experiment.Experiment attribute)

F

 	
 	fail() (dallinger.models.Info method)

 	(dallinger.models.Network method)

 	(dallinger.models.Node method)

 	(dallinger.models.Participant method)

 	(dallinger.models.Question method)

 	(dallinger.models.Transformation method)

 	(dallinger.models.Transmission method)

 	(dallinger.models.Vector method)

 	
 	fail_participant() (dallinger.experiment.Experiment method)

 	failed (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	full (dallinger.models.Network attribute)

G

 	
 	get_network_for_participant() (dallinger.experiment.Experiment method)

H

 	
 	HighPerformanceBotBase (class in dallinger.bots)

 	
 	hit_id (dallinger.models.Participant attribute)

I

 	
 	id (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	Info (class in dallinger.models)

 	info (dallinger.models.Transmission attribute)

 	info_get_request() (dallinger.experiment.Experiment method)

 	info_id (dallinger.models.Transmission attribute)

 	info_in (dallinger.models.Transformation attribute)

 	info_in_id (dallinger.models.Transformation attribute)

 	info_out (dallinger.models.Transformation attribute)

 	
 	info_out_id (dallinger.models.Transformation attribute)

 	info_post_request() (dallinger.experiment.Experiment method)

 	infos() (dallinger.models.Network method)

 	(dallinger.models.Node method)

 	(dallinger.models.Participant method)

 	initial_recruitment_size (dallinger.experiment.Experiment attribute)

 	is_complete() (dallinger.experiment.Experiment method)

 	is_connected() (dallinger.models.Node method)

 	is_overrecruited() (dallinger.experiment.Experiment method)

K

 	
 	known_classes (dallinger.experiment.Experiment attribute)

L

 	
 	latest_transmission_recipient() (dallinger.models.Network method)

 	
 	log() (dallinger.experiment.Experiment method)

 	log_summary() (dallinger.experiment.Experiment method)

M

 	
 	make_uuid() (dallinger.experiment.Experiment class method)

 	mark_received() (dallinger.models.Transmission method)

 	
 	max_size (dallinger.models.Network attribute)

 	mode (dallinger.models.Participant attribute)

 	mutate() (dallinger.models.Node method)

N

 	
 	neighbors() (dallinger.models.Node method)

 	Network (class in dallinger.models)

 	network (dallinger.models.Info attribute)

 	(dallinger.models.Node attribute)

 	(dallinger.models.Transformation attribute)

 	(dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

 	network_id (dallinger.models.Info attribute)

 	(dallinger.models.Node attribute)

 	(dallinger.models.Transformation attribute)

 	(dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

 	
 	networks() (dallinger.experiment.Experiment method)

 	networks_transformations (dallinger.models.dallinger.models.Network attribute)

 	networks_transmissions (dallinger.models.dallinger.models.Network attribute)

 	Node (class in dallinger.models)

 	node (dallinger.models.Transformation attribute)

 	node_get_request() (dallinger.experiment.Experiment method)

 	node_id (dallinger.models.Transformation attribute)

 	node_post_request() (dallinger.experiment.Experiment method)

 	nodes() (dallinger.models.Network method)

 	(dallinger.models.Participant method)

 	number (dallinger.models.Question attribute)

O

 	
 	on_signup() (dallinger.bots.HighPerformanceBotBase method)

 	origin (dallinger.models.Info attribute)

 	(dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

 	
 	origin_id (dallinger.models.Info attribute)

 	(dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

P

 	
 	Participant (class in dallinger.models)

 	participant (dallinger.models.Node attribute)

 	(dallinger.models.Question attribute)

 	participant_id (dallinger.models.Node attribute)

 	(dallinger.models.Question attribute)

 	participate() (dallinger.bots.BotBase method)

 	practice_repeats (dallinger.experiment.Experiment attribute)

 	print_verbose() (dallinger.models.Network method)

 	property1 (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	
 	property2 (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	property3 (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	property4 (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	property5 (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	public_properties (dallinger.experiment.Experiment attribute)

Q

 	
 	Question (class in dallinger.models)

 	
 	question (dallinger.models.Question attribute)

 	questions() (dallinger.models.Participant method)

R

 	
 	receive() (dallinger.models.Node method)

 	receive_time (dallinger.models.Transmission attribute)

 	received_infos() (dallinger.models.Node method)

 	recruit() (dallinger.experiment.Experiment method)

 	recruiter (dallinger.experiment.Experiment attribute)

 	replay_event() (dallinger.experiment.Experiment method)

 	replay_finish() (dallinger.experiment.Experiment method)

 	
 	replay_start() (dallinger.experiment.Experiment method)

 	replay_started() (dallinger.experiment.Experiment method)

 	replicate() (dallinger.models.Node method)

 	response (dallinger.models.Question attribute)

 	role (dallinger.models.Network attribute)

 	run() (dallinger.experiment.Experiment method)

 	run_experiment() (dallinger.bots.BotBase method)

 	(dallinger.bots.HighPerformanceBotBase method)

S

 	
 	save() (dallinger.experiment.Experiment method)

 	session (dallinger.experiment.Experiment attribute)

 	setup() (dallinger.experiment.Experiment method)

 	sign_off() (dallinger.bots.BotBase method)

 	(dallinger.bots.HighPerformanceBotBase method)

 	sign_up() (dallinger.bots.BotBase method)

 	(dallinger.bots.HighPerformanceBotBase method)

 	
 	size() (dallinger.models.Network method)

 	status (dallinger.models.Participant attribute)

 	(dallinger.models.Transmission attribute)

 	submission_successful() (dallinger.experiment.Experiment method)

 	subscribe_to_quorum_channel() (dallinger.bots.HighPerformanceBotBase method)

T

 	
 	task (dallinger.experiment.Experiment attribute)

 	time_of_death (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	Transformation (class in dallinger.models)

 	transformation_applied_to (dallinger.models.dallinger.models.Info attribute)

 	transformation_get_request() (dallinger.experiment.Experiment method)

 	transformation_post_request() (dallinger.experiment.Experiment method)

 	transformation_whence (dallinger.models.dallinger.models.Info attribute)

 	transformations() (dallinger.models.Info method)

 	(dallinger.models.Network method)

 	(dallinger.models.Node method)

 	transformations_here (dallinger.models.dallinger.models.Node attribute)

 	Transmission (class in dallinger.models)

 	
 	transmission_get_request() (dallinger.experiment.Experiment method)

 	transmission_post_request() (dallinger.experiment.Experiment method)

 	transmissions() (dallinger.models.Info method)

 	(dallinger.models.Network method)

 	(dallinger.models.Node method)

 	(dallinger.models.Vector method)

 	transmit() (dallinger.models.Node method)

 	type (dallinger.models.Info attribute)

 	(dallinger.models.Network attribute)

 	(dallinger.models.Node attribute)

 	(dallinger.models.Participant attribute)

 	(dallinger.models.Question attribute)

 	(dallinger.models.Transformation attribute)

U

 	
 	unique_id (dallinger.models.Participant attribute)

 	
 	update() (dallinger.models.Node method)

V

 	
 	Vector (class in dallinger.models)

 	vector (dallinger.models.Transmission attribute)

 	vector_get_request() (dallinger.experiment.Experiment method)

 	vector_id (dallinger.models.Transmission attribute)

 	
 	vector_post_request() (dallinger.experiment.Experiment method)

 	vectors() (dallinger.models.Network method)

 	(dallinger.models.Node method)

 	verbose (dallinger.experiment.Experiment attribute)

W

 	
 	worker_id (dallinger.models.Participant attribute)

Running demos on Heroku

Running the demos of Dallinger in “sandbox” mode, will require a Heroku account and verification by providing a credit card in your Heroku account.
If you only make use of Heroku’s free tier offerings, you will not be charged.

Heroku states that the use of any add-on requires account verification (even free tier add-ons). Redis is a requirement for Dallinger to run and is considered by Heroku as an add-on feature.
More information on account verification can be found here [https://devcenter.heroku.com/articles/account-verification/].

If you wish to only make use of Heroku’s free tier offerings, set the following in the demo’s config.txt file:

database_size = hobby-dev
redis_size = hobby-dev

You can read more about Heroku’s Postgres Plans [https://devcenter.heroku.com/articles/heroku-postgres-plans/] and
their Redis add-on [https://elements.heroku.com/addons/heroku-redis/] offering.

Also note that you may also need to set:

dyno_type = hobby

Read more about Heroku’s Dyno Types [https://devcenter.heroku.com/articles/dyno-types/].

Learning to Use Dallinger

Beginner

Key concepts in Dallinger

	Database API

	The Experiment Class

Dallinger as a web app

	Communicating With the Server

	Web API

Experiment design

	Required Experiment Files

	config.txt

	dallinger2.js

Example walkthroughs

	Bartlett1932 walkthrough

Intermediate

Experiment design

	Networks

	Nodes

	Infos

	Transformations

	Using properties 1 through 5

	Processes

	Failing

	Waiting rooms

Running experiments

	Command-Line Utility

	Debugging

Advanced

Experiment design

	Changing route behavior and making new routes

	Sending requests from within Dallinger

Running experiments

	Writing automated tests

	Compensating workers

	Monitoring a live experiment

	Recruiters

Required Experiment Files

Dallinger is flexible with regards to the form the front end takes.
However, there are a number of required or forbidden files. You can
verify that a directory is compatible by running the
verify command
from a terminal within the directory. Though just because these checks
pass doesn’t mean the experiment will run! The minimal required
structure is as follows:

[image:]

Blue items are (optional) directories (note that the experiment
directory can have any name), green items are required files (the README
file can be either a txt file or a md file), and red items are forbidden
files that will cause a conflict at run time.

Required files

	config.txt - The config file contains a variety of parameters that
affect how Dallinger runs. For more info see…

	experiment.py - This is a python file containing the custom
experiment code.

	README.txt/md - This (hopefully) contains a helpful description of
the experiment.

Forbidden files

A number of files cannot be included in the experiment directory. This
is because, when Dallinger runs, it inserts a number of required files
into the experiment directory and will overwrite any files with the same
name. The files are as follows:

	complete.html - this html page shows when dallinger is run in debug
mode and the experiment is complete.

	error_dallinger.html - this is a flexible error page that shows when
something goes wrong.

	launch.html - this page is shown when the /launch route is pinged and
the experiment starts successfully.

	waiting.html - this page shows a standard waiting room for experiments
that require multiple users at once.

	robots.txt - this file is returned to bots (e.g. from Google) that
bump into the experiment when crawling the internet.

	dallinger2.js - this is a javascript library with a number of helpful
functions.

	reqwest.min.js [https://github.com/ded/reqwest] - this is
required for dallinger2.js to work.

	dallinger.css - this contains several css classes that are used in the
demos.

Vagrant installation

Install the Vagrant virtual machine management system from Hashicorp [https://www.vagrantup.com/docs/installation/] and the VirtualBox [https://www.virtualbox.org/] virtualization software.

If you already use a different Virtual Machine provider, it may be compatible with Vagrant, in which case you may need to modify the Vagrantfile. This method is not recommended.

Starting Dallinger

The first time you start the virtual machine, Vagrant will download an Ubuntu Linux image and run installation steps. This will take some time and downloads a large amount of data through the internet connection. The command to begin this process is:

vagrant up

You can then connect to the vagrant machine over ssh and interact with dallinger. This is done through:

vagrant ssh

You will be in the /vagrant directory which is shared with the host machine. You can use Dallinger and run tests as usual from this prompt. When running an experiment, you should specify port 5000 as the experiment’s port, which will then be made available to the host on port 5000.

When you’re finished, shut the Vagrant machine down by running:

vagrant halt

 _static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Dallinger

 		
 Installation

 		
 Installation Options

 		
 Using Dallinger with Docker

 		
 Mac OS X

 		
 Install Python

 		
 Install Postgresql

 		
 Create the databases

 		
 Install Heroku

 		
 Install Redis

 		
 Install Git

 		
 Set up a virtual environment

 		
 Install Dallinger

 		
 Ubuntu

 		
 Install Python

 		
 Install Postgresql

 		
 Create the databases

 		
 Install Heroku

 		
 Install Redis

 		
 Install Git

 		
 Set up a virtual environment

 		
 Install Dallinger

 		
 Setting Up AWS, Mechanical Turk, and Heroku

 		
 Create the configuration file

 		
 Amazon Web Services API Keys

 		
 Amazon Mechanical Turk

 		
 Heroku

 		
 Open Science Framework (optional)

 		
 Done?

 		
 Demoing Dallinger

 		
 Command-Line Utility

 		
 verify

 		
 bot

 		
 debug

 		
 sandbox

 		
 deploy

 		
 logs

 		
 summary

 		
 export

 		
 email_test

 		
 compensate

 		
 qualify

 		
 revoke

 		
 hibernate

 		
 awaken

 		
 destroy

 		
 hits

 		
 expire

 		
 apps

 		
 monitor

 		
 load

 		
 setup

 		
 uuid

 		
 rq_worker

 		
 Configuration

 		
 Built-in configuration

 		
 General

 		
 Recruitment (General)

 		
 Amazon Mechanical Turk Recruitment

 		
 Email Notifications

 		
 Deployment Configuration

 		
 Choosing configuration values

 		
 Email Notification Setup

 		
 Instructions

 		
 The Config Settings

 		
 Pitfalls and Solutions

 		
 Running Experiments Programmatically

 		
 Parameterized Experiment Runs

 		
 Repeatability

 		
 Importing Your Experiment

 		
 Monitoring a Live Experiment

 		
 Command line tools

 		
 Papertrail

 		
 Setting up alerts

 		
 Experiment Data

 		
 Viewing the PostgreSQL Database

 		
 Mac OS X

 		
 Ubuntu

 		
 Running bots as participants

 		
 Running an experiment locally with bots

 		
 Running an experiment with a mix of bots and real participants

 		
 Running a single bot

 		
 Registration on the OSF

 		
 Troubleshooting

 		
 Python Processes Kept Alive

 		
 Known Postgres issues

 		
 Common Sandbox Error

 		
 Combining Dallinger core development and running experiments

 		
 Dallinger Demos

 		
 Bartlett (1932), stories

 		
 Networked chatroom

 		
 Concentration

 		
 Transmitting functions

 		
 Bartlett (1932), drawings

 		
 Markov Chain Monte Carlo with People

 		
 Rogers’ Paradox

 		
 Configuration

 		
 The Sheep Market

 		
 Snake

 		
 2048

 		
 Vox Populi (Wisdom of the crowd)

 		
 Developer Installation

 		
 Mac OS X

 		
 Install Python

 		
 Install Postgresql

 		
 Create the databases

 		
 Install Heroku

 		
 Install Redis

 		
 Install Git

 		
 Set up a virtual environment

 		
 Install prerequisites for building documentation

 		
 Install Dallinger

 		
 Install the Git pre-commit hook

 		
 Install the dlgr.demos sub-package

 		
 Ubuntu

 		
 Install Python

 		
 Install Postgresql

 		
 Create the databases

 		
 Install Heroku

 		
 Install Redis

 		
 Install Git

 		
 Set up a virtual environment

 		
 Install prerequisites for building documentation

 		
 Install Dallinger

 		
 Install the Git pre-commit hook

 		
 Install the dlgr.demos sub-package

 		
 Creating an Experiment

 		
 The Experiment Package

 		
 myexperiments.pushbutton

 		
 myexperiments.pushbutton/myexperiments

 		
 myexperiments.pushbutton/myexperiments/pushbutton

 		
 myexperiments.pushbutton/tests

 		
 myexperiments.pushbutton/docs

 		
 myexperiments.pushbutton/licenses

 		
 Detailed Description for Support Files

 		
 myexperiments.pushbutton/setup.py

 		
 myexperiments.pushbutton/constraints.txt

 		
 myexperiments.pushbutton/requirements.txt

 		
 myexperiments.pushbutton/dev-requirements.txt

 		
 myexperiments.pushbutton/README.md

 		
 Other files in myexperiments.pushbutton

 		
 myexperiments.pushbutton/test/test_pushbutton.py

 		
 myexperiments.pushbutton/docs/Makefile

 		
 myexperiments.pushbutton/docs/source/index.rst

 		
 myexperiments.pushbutton/docs/source/spelling_wordlist.txt

 		
 Other files and directories in myexperiments.pushbutton/docs/source

 		
 Experiment Code in Detail

 		
 myexperiments.pushbutton/myexperiments/pushbutton/__init__.py

 		
 myexperiments.pushbutton/myexperiments/pushbutton/config.txt

 		
 myexperiments.pushbutton/myexperiments/pushbutton/experiment.py

 		
 myexperiments.pushbutton/myexperiments/pushbutton/bots.py

 		
 myexperiments.pushbutton/myexperiments/pushbutton/templates/layout.html

 		
 myexperiments.pushbutton/myexperiments/pushbutton/templates/ad.html

 		
 myexperiments.pushbutton/myexperiments/pushbutton/templates/consent.html

 		
 myexperiments.pushbutton/myexperiments/pushbutton/templates/instructions.html

 		
 myexperiments.pushbutton/myexperiments/pushbutton/templates/exp.html

 		
 myexperiments.pushbutton/myexperiments/pushbutton/templates/questionnaire.html

 		
 myexperiments.pushbutton/myexperiments/pushbutton/static/scripts/experiment.js

 		
 Extending the Template

 		
 The Bartlett 1932 Experiment

 		
 Starting the Cookiecutter template

 		
 Setting Up the Network

 		
 Recruitment

 		
 Sources and Models

 		
 The Experiment Code

 		
 The experiment templates

 		
 Creating a Participant Bot

 		
 Developing Your Own Experiment

 		
 Networks

 		
 Nodes and Sources

 		
 Node connections

 		
 Using a network

 		
 Multiple networks

 		
 Common networks in Dallinger

 		
 Empty

 		
 Chain

 		
 DelayedChain

 		
 Star

 		
 Burst

 		
 FullyConnected

 		
 Other available networks

 		
 DiscreteGenerational

 		
 ScaleFree

 		
 SequentialMicrosociety

 		
 SplitSampleNetwork

 		
 Creating a network

 		
 Dallinger with Docker

 		
 The Experiment Class

 		
 Database API

 		
 SharedMixin

 		
 Network

 		
 Columns

 		
 Relationships

 		
 Methods

 		
 Node

 		
 Columns

 		
 Relationships

 		
 Methods

 		
 Vector

 		
 Columns

 		
 Relationships

 		
 Methods

 		
 Info

 		
 Columns

 		
 Relationships

 		
 Methods

 		
 Transmission

 		
 Columns

 		
 Relationships

 		
 Methods

 		
 Transformation

 		
 Columns

 		
 Relationships

 		
 Methods

 		
 Participant

 		
 Columns

 		
 Relationships

 		
 Methods

 		
 Question

 		
 Columns

 		
 Relationships

 		
 Methods

 		
 Web API

 		
 Miscellaneous routes

 		
 Experiment routes

 		
 Communicating With the Server

 		
 Javascript API

 		
 The dallinger object

 		
 Making requests to experiment routes

 		
 Deferred objects

 		
 Experiment Initialization and Completion

 		
 Helper functions and properties

 		
 Rewarding participants

 		
 Base payment

 		
 Bonus payment

 		
 Time based bonuses

 		
 Performance based bonuses

 		
 Waiting rooms

 		
 Using the waiting room

 		
 Writing bots

 		
 High-performance bots

 		
 API documentation

 		
 Selenium bots

 		
 API documentation

 		
 Scaling Selenium bots

 		
 Extra Configuration

 		
 Recruitment

 		
 Recruitment Planning

 		
 Configuration Parameters

 		
 Waiting Rooms

 		
 Recruitment Handling in Experiment Code

 		
 Over-recruitment

 		
 Private repositories

 		
 Running the tests

 		
 Amazon Mechanical Turk Integration Tests

 		
 Commands

 		
 Tests

 		
 Linting

 		
 Contributing to Dallinger Documentation

 		
 Building Documentation Locally

 		
 Tox (aka “The Big Hammer”)

 		
 Building from Your Current Local Source

 		
 Releasing a new version of Dallinger

 		
 Acknowledgments

 		
 Dallinger’s incubator

_images/barplot.png
== engagement
= ficulty

_images/chain.png
O-O- OO
OO0

_images/class_chart.jpg
Experiment

Participant Network

Question

Transmission Transformation

_images/bartlett-drawing.jpg
N BB ds
Boood B B
XTI XAERY

_images/burst.png

_images/empty.jpg

_images/delayed.png
{0

_images/directories.jpg
Experiment directory

v’ config.txt v/ experiment.py v README.txt/md

templates
| X complete.html X error_wallace.html X launch.html |

static

X robots.txt
scripts

Css

X wallace.js X wallace.css

X reqwest.min.js

_images/heroku.jpg
X +
= C @ @ & https//dashboard.heroku.com/apps

New ¢

B Personal apps| Heroku

Y| HeEroku

©) Personal ¢

You don't have any apps yet

Every app and pipeli or by
Create new app

Looking for help getting started?

jes in the De

Center

[hses a Wogngs i

Salesforce.corm

_images/screenshot.jpg
Level:3 Moves: 16

_images/front_back_layout.jpg
Back-end

Database Experiment

Front-end

o

_images/full.png

_images/screenshot.png

_images/star.png

_static/ajax-loader.gif

_static/burst.png

_static/chain.png
O-O- OO
OO0

_static/bartlett-drawing.jpg
N BB ds
Boood B B
XTI XAERY

_static/comment-close.png

_static/comment.png

_static/class_chart.jpg
Experiment

Participant Network

Question

Transmission Transformation

_static/comment-bright.png

_static/corner.jpg

_static/barplot.png
== engagement
= ficulty

_static/down.png

_static/empty.jpg

_static/directories.jpg
Experiment directory

v’ config.txt v/ experiment.py v README.txt/md

templates
| X complete.html X error_wallace.html X launch.html |

static

X robots.txt
scripts

Css

X wallace.js X wallace.css

X reqwest.min.js

_static/down-pressed.png

_static/front_back_layout.jpg
Back-end

Database Experiment

Front-end

o

_static/full.png

_static/file.png

_static/delayed.png
{0

_static/plus.png

_static/heroku.jpg
X +
= C @ @ & https//dashboard.heroku.com/apps

New ¢

B Personal apps| Heroku

Y| HeEroku

©) Personal ¢

You don't have any apps yet

Every app and pipeli or by
Create new app

Looking for help getting started?

jes in the De

Center

[hses a Wogngs i

Salesforce.corm

_static/minus.png

_static/star.png

_static/screenshot.jpg
Level:3 Moves: 16

_static/screenshot.png

_static/grid_mini.png

_static/grid_small.png

_static/grid.png

