

Dallinger

Laboratory automation for the behavioral and social sciences.

User Documentation

	Installation

	Installing Dallinger with Anaconda

	Setting Up AWS, Mechanical Turk, and Heroku

	Demoing Dallinger

	Running bots as participants

	Learning to Use Dallinger

	Monitoring a Live Experiment

	Viewing the PostgreSQL Database

	Command-Line Utility

	Configuration

	Python module

	Registration on the OSF

Demos

	2048

	Bartlett (1932), stories

	Networked chatroom-based coordination game

	Concentration

	Transmitting functions

	Bartlett (1932), drawings

	Markov Chain Monte Carlo with People

	Rogers’ Paradox

	The Sheep Market

	Snake

	Vox Populi (Wisdom of the crowd)

Developer documentation

	Developer Installation

	Running the tests

	Required Experimental Files

	Database API

	The Experiment Class

	Web API

	Communicating With the Server

	Extra Configuration

Miscellaneous

	Acknowledgments

	Dallinger’s incubator

Installation

If you would like to contribute to Dallinger, please follow these
alternative install
instructions.

Install Python

Dallinger is written in the language Python. For it to work, you will need
to have Python 2.7 installed. You can check what version of Python you
have by running:

python --version

If you do not have Python 2.7 installed, you can install it from the
Python website [https://www.python.org/downloads/].

Install Postgres

Dallinger uses Postgres to create local databases. On OS X, install
Postgres from postgresapp.com [http://postgresapp.com]. This will
require downloading a zip file, unzipping the file and installing the
unzipped application.

You will then need to add Postgres to your PATH environmental variable.
If you use the default location for installing applications on OS X
(namely /Applications), you can adjust your path by running the
following command:

export PATH="/Applications/Postgres.app/Contents/Versions/9.3/bin:$PATH"

NB: If you have installed a more recent version of Postgres (e.g., the
the upcoming version
9.4 [https://github.com/PostgresApp/PostgresApp/releases/tag/9.4rc1]),
you may need to alter that command slightly to accommodate the more
recent version number. To double check which version to include, then
run:

ls /Applications/Postgres.app/Contents/Versions/

Whatever number that returns is the version number that you should place
in the export command above. If it does not return a number, you
have not installed Postgres correctly in your /Applications folder
or something else is horribly wrong.

Create the Database

After installing Postgres, you will need to create a database for your
experiments to use. Run the following command from the command line:

psql -c 'create database dallinger;' -U postgres

Install Dallinger

Install Dallinger from the terminal by running

pip install dallinger[data]

Test that your installation works by running:

dallinger --version

If you use Anaconda, installing Dallinger probably failed. The problem is
that you need to install bindings for the psycopg2 package (it helps
Python play nicely with Postgres) and you must use conda for conda to
know where to look for the links. You do this with:

conda install psycopg2

Then, try the above installation commands. They should work now, meaning
you can move on.

Next, you’ll need access keys for AWS, Heroku,
etc..

Install Heroku

To run experiments locally or on the internet, you will need the Heroku Command
Line Interface installed, version 3.28.0 or better. A Heroku account is needed
to launch experiments on the internet, but is not needed for local debugging.

To check which version of the Heroku CLI you have installed, run:

heroku --version

The Heroku CLI is available for download from
heroku.com [https://devcenter.heroku.com/articles/heroku-cli].

Install Redis

Debugging experiments requires you to have Redis installed and the Redis
server running. You can find installation instructions at
redis.com [https://redis.io/topics/quickstart].

Installing Dallinger with Anaconda

If you are interested in Dallinger and use
Anaconda [https://www.continuum.io/downloads], you’ll need to adapt
the standard instructions slightly.

Getting Python 2.7 started if you have Anaconda 3

If you have Anaconda 3 (i.e., Anaconda running Python 3), you’ll need to create a virtual environment for Python 2.7.

To initialize the new environment, type the following command into the command line:

conda create -n py27 python=2.7 anaconda

You can customize the name of your Python 2.7 environment by changing the py27 to your environment name of choice. Once it’s created, then activate your new environment at the command line:

source activate py27

If you didn’t choose to stick with the py27 name, make sure that you change that to reflect your environment name. Once you’ve activated the environment, you can proceed with the rest of the instructions below.

Whenever you want to leave the environment, you can deactivate it at the command line:

	::

	source deactivate py27

Again, be sure to change py27 to whatever you called your environment.

For more information about creating virtual environments within Anaconda, check out [http://conda.pydata.org/docs/using/envs.html].

Install psycopg2

In order to get the correct bindings, you need to install psycopg2
before you use requirements.txt; otherwise, everything will fail and
you will be endlessly frustrated.

conda install psycopg2

Install Dallinger

You’ll follow all of the Dallinger development installation
instructions,
with the exception of the virtual environment step. Then return here.

Confirm Dallinger works

Now, we need to make sure that Dallinger and Anaconda play nice with one
another. At this point, we’d check to make sure that Dallinger is properly
installed by typing

dallinger --version

into the command line. For those of us with Anaconda, we’ll get a long
error message. Don’t panic! Add the following to your .bash_profile:

export DYLD_FALLBACK_LIBRARY_PATH=$HOME/anaconda/lib/:$DYLD_FALLBACK_LIBRARY_PATH

If you installed anaconda using Python 3, you will need to change
anaconda in that path to anaconda3.

After you source your .bash_profile, you can check your Dallinger
version (using the same command that we used earlier), which should
return the Dallinger version that you’ve installed.

Re-link Open SSL

Finally, you’ll need to re-link openssl. Run the following:

brew install --upgrade openssl
brew unlink openssl && brew link openssl --force

Setting Up AWS, Mechanical Turk, and Heroku

Before you can use Dallinger, you will need accounts with Amazon Web
Services, Amazon Mechanical Turk, and Heroku. You will then need to
create a configuration file and set up your environment so that
Dallinger can access your accounts.

Create the configuration file

The first step is to create the Dallinger configuration file in your home
directory. You can do this using the Dallinger command-line utility
through

dallinger setup

which will prepopulate a hidden file .dallingerconfig in your home
directory. Alternatively, you can create this file yourself and fill it
in like so:

[AWS Access]
aws_access_key_id = ???
aws_secret_access_key = ???
aws_region = us-east-1

[Email Access]
dallinger_email_address = ???
dallinger_email_password = ???

In the next steps, we’ll fill in your config file with keys.

Amazon Web Services API Keys

You can get API keys for Amazon Web Services by following these
instructions [http://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html].

Then fill in the following lines of .dallingerconfig, replacing
??? with your keys:

[AWS Access]
aws_access_key_id = ???
aws_secret_access_key = ???

N.B. One feature of AWS API keys is that they are only displayed
once, and though they can be regenerated, doing so will render invalid
previously generated keys. If you are running experiments using a
laboratory account (or any other kind of group-owned account),
regenerating keys will stop other users who have previously generated
keys from being able to use the AWS account. Unless you are sure that
you will not be interrupting others’ workflows, it is advised that you
do not generate new API keys. If you are not the primary user of the
account, see if you can obtain these keys from others who have
successfully used AWS.

Amazon Mechanical Turk

It’s worth signing up for Amazon Mechanical Turk (perhaps using your AWS
account from above), both as a
requester [https://requester.mturk.com/mturk/beginsignin] and as a
worker [https://www.mturk.com/mturk/beginsignin]. You’ll use this to
test and monitor experiments. You should also sign in to each sandbox,
requester [https://requester.mturk.com/begin_signin] and
worker [https://workersandbox.mturk.com/mturk/welcome] using the
same account. Store this account and password somewhere, but you don’t
need to tell it to Dallinger.

Heroku

Next, sign up for Heroku [https://www.heroku.com/] and install the
Heroku toolbelt [https://toolbelt.heroku.com/].

You should see an interface that looks something like the following:

[image: This is the interface with the Heroku app]
This is the interface with the Heroku app

Then, log in from the command line:

heroku login

Open Science Framework (optional)

There is an optional integration that uses the Open Science Framework [https://osf.io/] (OSF) to register experiments. First, create an account
on the OSF. Next create a new OSF personal access token on the OSF settings
page [https://osf.io/settings/tokens/].

Finally, fill in the appropriate section of .dallingerconfig:

[OSF]
osf_access_token = ???

Done?

Done. You’re now all set up with the tools you need to work with
Dallinger.

Next, we’ll test Dallinger to make sure it’s working on your
system.

Demoing Dallinger

First, make sure you have Dallinger installed:

	Installation

	Developer Installation

To test out Dallinger, we’ll run a demo experiment in debug mode. First download the Bartlett (1932) demo [http://dallinger.readthedocs.io/en/latest/demos/bartlett1932.html] and unzip it. Then run Dallinger in debug mode from within that demo directory:

dallinger debug

You will see some output as Dallinger loads. When it is finished, you will
see something that looks like:

12:00:00 PM web.1 | 2017-01-01 12:00:00,000 New participant requested: http://0.0.0.0:5000/ad?assignmentId=debug9TXPFF&hitId=P8UTMZ&workerId=SP7HJ4&mode=debug

and your browser should automatically open to this URL.
You can start interacting as the first participant in the experiment.

In the terminal, press Ctrl+C to exit the server.

Help, the experiment page is blank! This may happen if you are using
an ad-blocker. Try disabling your ad-blocker and refresh the page.

Running bots as participants

Dallinger supports using the Selenium framework to write bots that participate in
experiments. Not all experiments will have bots available; the Bartlett (1932), stories
and Networked chatroom-based coordination game demos are the only built-in experiments that do.

Writing a bot

In your experiment.py you will need to create a subclass of BotBase called Bot.
This class should implement the participate method, which will be called once
the bot has navigated to the main experiment. Note, the BotBase class makes some
assumptions about HTML structure, based on the demo experiments. If your HTML
differs significantly you may need to override other methods too.

	
class dallinger.bots.BotBase(URL, assignment_id='', worker_id='')

	A base class for Bots that works with the built-in demos.

	
complete_questionnaire()

	Complete the standard debriefing form.

	
driver

	Returns a Selenium WebDriver instance of the type requested in the
configuration.

	
participate()

	Participate in the experiment.

	
run_experiment()

	Sign up, run the participate method, then sign off and close
the driver.

	
sign_off()

	Submit questionnaire and finish.

	
sign_up()

	Accept HIT, give consent and start experiment.

Running bots locally

You must set the configuration value recruiter='bots' to run an experiment using its
bot. As usual, this can be set in local or global configurations, as an
environment variable or as a keyword argument to run().
You should also set max_participants to the number of bots you want to run at once.
num_dynos_worker should be more than max_participants, as a bot takes up a worker
process while it is running. In addition, you may want to increase num_dynos_web to improve
performance.

Dallinger uses Selenium to run bots locally. By default, it will try to run
phantomJS directly, however it supports using Firefox and Chrome through
configuration variables.

webdriver_type = firefox

We recommend using Firefox when writing bots, as it allows you to visually see
its output and allows you to attach the development console directly to the
bot’s browser session.

Running an experiment with the API may look like:

participants = 4
data = experiment.run(
 mode=u'debug',
 recruiter=u'bots',
 max_participants=participants,
 num_dynos_web=int(participants/4) + 1,
 num_dynos_worker=participants,
 workers=participants+5,
)

Running a single bot

If you want to run a single bot as part of an ongoing experiment, you can use
the bot command. This is useful for testing a single
bot’s behavior as part of a longer-running experiment, and allows easy access
to the Python pdb debugger.

Scaling bots locally

For example you may want to run a dedicated computer on your lab network to host
bots, without slowing down experimenter computers. It is recommended that you
run Selenium in a hub configuration, as a single Selenium instance will limit
the number of concurrent sessions.

You can also provide a URL to a Selenium WebDriver instance using the
webdriver_url configuration setting. This is required if you’re running
Selenium in a hub configuration. The hub does not need to be on the same computer
as Dallinger, but it does need to be able to access the computer running
Dallinger directly by its IP address.

On Apple macOS, we recommend using Homebrew to install and run selenium, using:

brew install selenium-server-standalone
selenium-server -port 4444

On other platforms, download the latest selenium-server-standalone.jar file
from SeleniumHQ [http://www.seleniumhq.org/download/] and run a hub using:

java -jar selenium-server-standalone-3.3.1.jar -role hub

and attach multiple nodes by running:

java -jar selenium-server-standalone-3.3.1.jar -role node -hub http://hubcomputer.example.com:4444/grid/register

These nodes may be on other computers on the local network or on the same host
machine. If they are on the same host you will need to add -port 4446 (for
some port number) such that each Selenium node on the same server is listening
on a different port.

You will also need to set up the browser interfaces on each computer that’s running
a node. This requires being able to run the browser and having the correct driver
available in the system path, so the Selenium server can run it.

We recommend using Chrome when running large numbers of bots, as it is more
feature-complete than PhantomJS but with better performance at scale than Firefox. It
is best to run at most three Firefox sessions on commodity hardware, so for best
results 16 bots should be run over 6 Selenium servers. This will depend on how
processor intensive your experiment is. It may be possible to run more sessions
without performance degradation.

Learning to Use Dallinger

Beginner

Key concepts in Dallinger

	Database API

	The Experiment Class

Dallinger as a web app

	Communicating With the Server

	Web API

Experimental design

	Required Experimental Files

	config.txt

	Dallinger.js

Example walkthroughs

	Bartlett1932 walkthrough

Intermediate

Experimental design

	Networks

	Nodes

	Infos

	Transformations

	Using properties 1 through 5

	Processes

	Failing

	Waiting rooms

Running experiments

	Command-Line Utility

	Debugging

Advanced

Experimental design

	Changing route behavior and making new routes

	Sending requests from within Dallinger

Running experiments

	Writing automated tests

	Compensating workers

	Monitoring a live experiment

	Recruiters

Monitoring a Live Experiment

There are a number of ways that you can monitor a live experiment:

Command line tools

dallinger summary --app {#id}, where {#id} is the id (w...) of
the application.

This will print a summary showing the number of participants with each
status code, as well as the overall yield:

status | count

1 | 26
101 | 80
103 | 43
104 | 2

Yield: 64.00%

Papertrail

You can use Papertrail to view and search the live logs of your
experiment. You can access the logs either through the Heroku
dashboard’s Resources panel
(https://dashboard.heroku.com/apps/{#id}/resources), where {#id} is the
id of your experiment, or directly through Papertrail.com
(https://papertrailapp.com/systems/{#id}/events).

Setting up alerts

You can set up Papertrail to send error notifications to Slack or
another communications platform.

	Take a deep breath.

	Open the Papertrail logs.

	Search for the term error.

	To the right of the search bar, you will see a button titled “+ Save
Search”. Click it. Name the search “Errors”. Then click “Save &
Setup an Alert”, which is to the right of “Save Search”.

	You will be directed to a page with a list of services that you can
use to set up an alert.

	Click, e.g., Slack.

	Choose the desired frequency of alert. We recommend the minimum, 1
minute.

	Under the heading “Slack details”, open (in a new tab or window)
the link new Papertrail
integration.

	This will bring you to a Slack page where you will choose a channel
to post to. You may need to log in.

	Select the desired channel.

	Click “Add Papertrail Integration”.

	You will be brought to a page with more information about the
integration.

	Scroll down to Step 3 to get the Webhook URL. It should look
something like
https://hooks.slack.com/services/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.

	Copy this link to your clipboard.

	Change anything else you want and then scroll to the bottom and
click “Save integration”.

	Go back to Papertrail page that you left in Step 7.

	Paste the copied URL into the input text box labeled “Integration’s
Webhook URL” under the “Slack Details” heading.

	Click “Create Alert” on the same page.

	Victory.

Viewing the PostgreSQL Database

Postico is a nice tool for examining Postgres databases on OS X. We use
it to connect to live experiment databases. Here are the steps needed to
do this:

	Download Postico [https://eggerapps.at/postico/] and place it in
your Applications folder.

	Open Postico.

	Press the “New Favorite” button in the bottom left corner to access a
new database.

	Get the database credentials from the Heroku dashboard:
	Go to https://dashboard.heroku.com/apps/{app_id}/resources

	Under the Add-ons subheading, go to “Heroku Postgres ::
Database”

	Note the database credentials under the subheading “Connection
Settings”. You’ll use these in step 5.

	Fill in the database settings in Postico. You’ll need to include the:
	Host

	Port

	User

	Password

	Database

	Connect to the database.
	You may see a dialog box pop up saying that Postico cannot verify
the identity of the server. Click “Connect” to proceed.

Command-Line Utility

Dallinger is executed from the command line within the experiment directory with the following commands:

verify

Verify that a directory is a Dallinger-compatible app.

bot

Spawn a bot and attach it to the specified application. The --debug flag
connects the bot to the locally running instance of Dallinger. Alternatively,
the --app <app> flag specifies a live experiment by its id.

debug

Run the experiment locally. An optional --verbose flag prints more detailed
logs to the command line.

sandbox

Runs the experiment on MTurk’s sandbox using Heroku as a server. An optional
--verbose flag prints more detailed logs to the command line.

deploy

Runs the experiment live on MTurk using Heroku as a server. An optional
--verbose flag prints more detailed logs to the command line. An optional
--bot flag forces the bot recruiter to be used, rather than the configured
recruiter.

logs

Open the app’s logs in Papertrail. A required --app <app> flag specifies
the experiment by its id.

summary

Return a summary of an experiment. A required --app <app> flag specifies
the experiment by its id.

export

Download the database and partial server logs to a zipped folder within
the data directory of the experimental folder. Databases are stored in
CSV format. A required --app <app> flag specifies
the experiment by its id.

qualify

Assign qualification to a worker. Requires a qualification id
qualification_id, value value, and worker id worker_id. This is
useful when compensating workers if something goes wrong with the experiment.

hibernate

Temporarily scales down the specified app to save money. All dynos are
removed and so are many of the add-ons. Hibernating apps are
non-functional. It is likely that the app will not be entirely free
while hibernating. To restore the app use awaken. A required
--app <app> flag specifies the experiment by its id.

awaken

Restore a hibernating app. A required --app <app> flag specifies the
experiment by its id.

destroy

Tear down an experiment server. A required --app <app> flag specifies
the experiment by its id.

Configuration

The Dallinger configuration module provides tools for reading and writing
configuration parameters that control the behavior of an experiment. To use the
configuration, first import the module and get the configuration object:

import dallinger

config = dallinger.config.get_config()

You can then get and set parameters:

config.get("duration")
config.set("duration", 0.50)

When retrieving a configuration parameter, Dallinger will look for the parameter
first among environment variables, then in a config.txt in the experiment
directory, and then in the .dallingerconfig file, using whichever value
is found first. If the parameter is not found, Dallinger will use the default.

Built-in configuration

Built-in configuration parameters include:

	mode

	Run the experiment in this mode. Options include debug (local testing),
sandbox (MTurk sandbox), and live (MTurk).

	title

	Title of the HIT on Amazon Mechanical Turk.

	description

	Description of the HIT on Amazon Mechanical Turk.

	keywords

	Comma-separated list of keywords to use on Amazon Mechanical Turk.

	lifetime

	How long in hours that your HIT remains visible to workers.

	duration

	How long in hours participants have until the HIT will time out.

	us_only

	A boolean that control whether this HIT is available only to MTurk workers
in the U.S.

	base_payment

	Base payment in U.S. dollars.

	approve_requirement

	The percentage of past MTurk HITs that must have been approved for a worker
to qualify to participate in your experiment. 1-100.

	contact_email_on_error unicode

	Email address displayed when there is an error.

	auto_recruit

	Whether recruitment should be automatic.

	group

	A string. Unicode string.

	loglevel

	A number between 0 and 4 that controls the verbosity of logs, from debug
to critical.

	organization_name [string]

	Identifies your institution, business, or organization.

	browser_exclude_rule [comma separated string]

	A set of rules you can apply to prevent participants with unsupported web
browsers from participating in your experiment.

	database_url

	URI of the Postgres database.

	database_size

	Size of the database on Heroku. See Heroku Postgres plans [https://devcenter.heroku.com/articles/heroku-postgres-plans].

	dyno_type

	Heroku dyno type to use. See Heroku dynos types [https://devcenter.heroku.com/articles/dyno-types].

	num_dynos_web

	Number of Heroku dynos to use for processing incoming HTTP requests. It is
recommended that you use at least two.

	num_dynos_worker

	Number of Heroku dynos to use for performing other computations.

	host

	IP address of the host.

	port

	Port of the host.

	notification_url

	URL where notifications are sent. This should not be set manually.

	clock_on

	If the clock process is on, it will perform a series of checks that ensure
the integrity of the database.

	logfile

	Where to write logs.

	aws_access_key_id

	AWS access key ID.

	aws_secret_access_key

	AWS access key secret.

	aws_region

	AWS region to use. Defaults to us-east-1.

	dallinger_email_address

	A Gmail address for use by Dallinger to send status emails.

	dallinger_email_password

	Password for the aforementioned Gmail address.

	heroku_team

	The name of the Heroku team to which all applications will be assigned.
This is useful for centralized billing. Note, however, that it will prevent
you from using free-tier dynos.

	whimsical

	What’s life without whimsy?

Python module

Dallinger experiments can be run through a high-level Python API.

import dallinger

experiment = dallinger.experiments.Bartlett1932()
data = experiment.run({
 mode=live,
 base_payment=1.00,
})

All parameters in config.txt and .dallingerconfig can be specified
in the configuration dictionary passed to the run function. The return
value is an object that allows you to access all the Dallinger data tables
in a variety of useful formats. Here are all the tables:

	::

	data.infos
data.networks
data.nodes
data.notifications
data.participants
data.questions
data.transformations
data.transmissions
data.vectors

For each of these tables, e.g. networks, you can access it in a variety of
formats, including:

data.networks.csv # Comma-separated value
data.networks.dict # Python dictionary
data.networks.df # pandas DataFrame
data.networks.html # HTML table
data.networks.latex # LaTeX table
data.networks.list # Python list
data.networks.ods # OpenDocument Spreadsheet
data.networks.tsv # Tab-separated values
data.networks.xls # Legacy Excel spreadsheet
data.networks.xlsx # Modern Excel spreadsheet
data.networks.yaml # YAML

Note that, at the moment, only the Bartlett1932 demo can be run in this way.

Registration on the OSF

Dallinger integrates with the Open Science Framework [https://osf.io/]
(OSF), creating a new OSF project and uploading your experiment code to the
project on launch. To enable, specify a personal access token osf_access_token
in your .dallingerconfig file. You can generate a new OSF personal access
token on the OSF settings page [https://osf.io/settings/tokens/].

2048

2048 is a sliding-block puzzle game by the Italian web developer
Gabriele Cirulli. The goal is to slide numbered tiles on a grid,
combining them to create a tile with a value of 2048.

[image: Screenshot of an in-progress 2048 game]
Screenshot of an in-progress 2048 game

Download the demo.

Bartlett (1932), stories

Frederic Bartlett’s 1932 book Remembering documents early experiments
that explore how using and transmitting a memory can affect the memory’s
contents. Bartlett wanted to understand how culture shapes memory.
Inspired by Philippe (1897), he performed a series of experiments that
asked participants to repeatedly recall a memory or to pass it down a
chain of people, from one to the next. Bartlett showed that the process
of reproduction alters memories over time, causing them to take on
features from an individual’s culture. More generally, the methods he
developed expose cumulative effects of the forces that reshape and
degrade memories and how they impact the structure and veracity of what
we remember.

Bartlett, F. C. (1932). Remembering. Cambridge: Cambridge University
Press.

In this demo, a story is passed down a chain.

Download the demo.

Networked chatroom-based coordination game

This is a networked coordination game where players broadcast messages
to each other and try to make the same decision as others.

Download the demo.

Concentration

The objective of Concentration is to flip and match all the turned-down
cards in as few moves as possible.

[image: Screenshot of an in-progress Concentration game]
Screenshot of an in-progress Concentration game

Download the demo.

Transmitting functions

Culturally transmitted knowledge changes as it is transmitted from
person to person. Some of the most striking instances of this process
come from cases of language acquisition. For example, in Nicaragua, a
community of deaf children transformed a fragmentary pidgin into a
language with rich grammatical structure by learning from each other
(Kegl and Iwata, 1989; Senghas and Coppola, 2001). Languages, legends,
and social norms are all shaped by the processes of cultural
transmission (Cavalli-Sforza, 1981; Boyd and Richerson, 1988; Kirby,
1999, 2001; Briscoe, 2002).

Laboratory studies of cultural transmission often use the method of
“iterated learning”, which has roots in Bartlett’s
experiments. In the iterated learning paradigm,
information is passed along a chain of individuals, from one to the
next, much like in the children’s game Telephone. Iterated learning
paradigms for the transmission of language and other forms of knowledge
have been developed, too (Kalish et al., 2007; Griffiths and Kalish,
2007; Griffiths et al., 2008a). For example, in one study, participants
learned the relationship between two continuous variables (“function
learning”) and were tested on what they had discovered (Kalish et al.,
2007). Responses on the test were then used to train the next
participant in the chain. Kalish et al. (2007) found that, over time,
knowledge transmitted through the chain reverts to the prior beliefs of
the individual learners.

Kalish, M. L., Griffiths, T. L., & Lewandowsky, S. (2007). Iterated
learning: Intergenerational knowledge transmission reveals inductive
biases. Psychonomic Bulletin and Review, 14, 288-294.

Download the demo.

Bartlett (1932), drawings

Frederic Bartlett’s 1932 book Remembering documents early experiments
that explore how using and transmitting a memory can affect the memory’s
contents. Bartlett wanted to understand how culture shapes memory.
Inspired by Philippe (1897), he performed a series of experiments that
asked participants to repeatedly recall a memory or to pass it down a
chain of people, from one to the next. Bartlett showed that the process
of reproduction alters memories over time, causing them to take on
features from an individual’s culture. More generally, the methods he
developed expose cumulative effects of the forces that reshape and
degrade memories and how they impact the structure and veracity of what
we remember.

[image: Bartlett's drawing experiment]
Bartlett’s drawing experiment

Bartlett, F. C. (1932). Remembering. Cambridge: Cambridge University
Press.

In this demo, a drawing is passed down a chain.

Download the demo.

Markov Chain Monte Carlo with People

Markov Chain Monte Carlo with People (MCMCP) is a method for uncovering
mental representations that exploits an equivalence between a model of
human choice behavior and an element of an MCMC algorithm. This demo
replicates Experiment 3 of Sanborn, Griffiths, & Shiffrin (2010), which
applies MCMCP to four natural categories, providing estimates of the
distributions over animal shapes that people associate with giraffes,
horses, cats, and dogs.

Sanborn, A. N., Griffiths, T. L., & Shiffrin, R. M. (2010). Uncovering
mental representations with Markov chain Monte Carlo. Cognitive
Psychology, 60(2), 63-106.

Download the demo.

Rogers’ Paradox

This experiment, which demonstrates Rogers paradox, explores the
evolution of asocial learning and unguided social learning in the
context of a numerical discrimination task.

Download the demo.

The Sheep Market

“The Sheep Market is a collection of 10,000 sheep created by workers on
Amazon’s Mechanical Turk. Each worker was paid $.02 (US) to “draw a
sheep facing left.”

http://www.aaronkoblin.com/project/the-sheep-market/

Download the demo.

Snake

This is the video game
Snake [https://en.m.wikipedia.org/wiki/Snake_(video_game)], in which
the player maneuvers a line which grows in length within the bounds of a
box, with the line itself being a primary obstacle.

Download the demo.

Vox Populi (Wisdom of the crowd)

https://en.wikipedia.org/wiki/Wisdom_of_the_crowd

Download the demo.

Developer Installation

We recommend installing Dallinger on Mac OS X. It’s also possible to use
Ubuntu, either directly or in a virtual machine. Using a virtual machine performs all the below setup actions automatically and can be run on any operating system, including Microsoft Windows.

Install Python 2.7

You will need Python 2.7. You can check what version of Python you have
by running:

python --version

If you do not have Python 2.7 installed, you can install it from the
Python website [https://www.python.org/downloads/].

Or, if you use Homebrew:

brew install python

Or, if you use Anaconda, install using conda, not Homebrew.

If you have Python 3.x installed and and symlinked to the command
python, you will need to create a virtualenv that interprets the
code as python2.7.
Fortunately, we will be creating a virtual environment anyway, so as
long as you run brew install python and you don’t run into any
errors because of your symlinks, then you can proceed with the
instructions. If you do run into any errors, good luck, we’re rooting
for you.

Install Postgres

On OS X, we recommend installing
Postgres.app [http://postgresapp.com] to start and stop a Postgres
server. You’ll also want to set up the Postgres command-line utilities
by following the instructions
here [http://postgresapp.com/documentation/cli-tools.html].

You will then need to add Postgres to your PATH environmental variable.
If you use the default location for installing applications on OS X
(namely /Applications), you can adjust your path by running the
following command:

export PATH="$PATH:/Applications/Postgres.app/Contents/Versions/latest/bin"

NB: If you have installed an older version of Postgres (e.g., < 9.5),
you may need to alter that command to accommodate the more recent
version number. To double check which version to include, run:

ls /Applications/Postgres.app/Contents/Versions/

Whatever values that returns are the versions that you should place in
the export command above in the place of latest.

If it does not return a number, you have not installed Postgres
correctly in your /Applications folder or something else is horribly
wrong.

On Ubuntu, follow the instructions under the heading “Installation”
here [https://help.ubuntu.com/community/PostgreSQL].

Create the Database

After installing Postgres, you will need to create a database for your
experiments to use. First, open the Postgres.app. Then, run the
following command from the command line:

psql -c 'create database dallinger;' -U postgres

If you get the following error...

psql: could not connect to server: No such file or directory
 Is the server running locally and accepting
 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

...then you probably did not start the app.

If you get the following error...

dyld: Library not loaded: /usr/local/opt/readline/lib/libreadline.6.dylib
 Referenced from: /usr/local/bin/psql
 Reason: image not found
Abort trap: 6

... then type the following command into the command line:

createdb -U postgres dallinger

(This error may arise if you are running Python 2.7 with Anaconda within a virtual environment.)

Set up a virtual environment

Note: if you are using Anaconda, ignore this virtualenv
section; use conda to create your virtual environment. Or, see the
special Anaconda installation instructions.

Set up a virtual environment by running the following commands:

pip install virtualenv
pip install virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
mkdir -p $WORKON_HOME
source $(which virtualenvwrapper.sh)
mkvirtualenv dallinger --python /usr/local/bin/python2.7

These commands use pip, the Python package manager, to install two
packages virtualenv and virtualenvwrapper. They set up an
environmental variable named WORKON_HOME with a string that gives a
path to a subfolder of your home directory (~) called Envs,
which the next command (mkdir) then makes according to the path
described in $WORKON_HOME (recursively, due to the -p flag).
That is where your environments will be stored. The source command
will run the command that follows, which in this case locates the
virtualenvwrapper.sh shell script, the contents of which are beyond
the scope of this setup tutorial. If you want to know what it does, a
more in depth description can be found on the documentation site for virtualenvwrapper [http://virtualenvwrapper.readthedocs.io/en/latest/install.html#python-interpreter-virtualenv-and-path].

Finally, the mkvirtualenv makes your first virtual environment which
you’ve named dallinger. We have explicitly passed it the location of
python2.7 so that even if your python command has been remapped
to python3, it will create the environment with python2.7 as its
interpreter.

In the future, you can work on your virtual environment by running:

source $(which virtualenvwrapper.sh)
workon dallinger

NB: To stop working on the virtual environment, run deactivate. To
list all available virtual environments, run workon with no
arguments.

Install prerequisites for building documentation

To be able to build the documentation, you will need:

	pandoc. Please follow the instructions here [http://pandoc.org/installing.html] to install it.

	the Enchant library. Please follow the instructions here [http://pythonhosted.org/pyenchant/download.html] to install it.

Install Dallinger

Next, navigate to the directory where you want to house your development
work on Dallinger. Once there, clone the Git repository using:

git clone https://github.com/Dallinger/Dallinger

This will create a directory called Dallinger in your current
directory.

Change into your the new directory and make sure you are still in your
virtual environment before installing the dependencies. If you want to
be extra careful, run the command workon dallinger, which will ensure
that you are in the right virtual environment.

Note: if you are using Anaconda – as of August 10, 2016 – you will need to
follow special Anaconda installation instructions. This should be fixed in future versions.

cd Dallinger

Now we need to install the dependencies using pip:

pip install -r dev-requirements.txt

Next run setup.py with the argument develop:

pip install -e .[data]

Test that your installation works by running:

dallinger --version

Note: if you are using Anaconda and get a long traceback here,
please see the special Installing Dallinger with Anaconda.

Next, you’ll need access keys for AWS, Heroku,
etc..

Running the tests

If you push a commit to a branch in the Dallinger organization on GitHub,
or open a pull request from your own fork, Dallinger’s automated code tests
will be run on Travis [https://travis-ci.org/].

Current build status: [image: status] [https://travis-ci.org/Dallinger/Dallinger]

The tests include:

	Making sure that a source distribution of the Python package can be created.

	Running flake8 [https://flake8.readthedocs.io] to make sure Python code
conforms to the PEP 8 [https://www.python.org/dev/peps/pep-0008/] style guide.

	Running the tests for the Python code using pytest [http://doc.pytest.org/]
and making sure they pass in Python 2.7.

	Making sure that code coverage [https://coverage.readthedocs.io/]
for the Python code is above the desired threshold.

	Making sure the docs build without error.

Amazon Mechanical Turk Integration Tests

You can also run all these tests locally, with some additional requirements:

	The Amazon Web Services credentials set in .dallingerconfig must correspond
to a valid MTurk Sandbox
Requester [https://requester.mturk.com/mturk/beginsignin] account.

	Some tests require access to an MTurk Sandbox
Worker [https://workersandbox.mturk.com/mturk/welcome] account, so you
should create this account (probably using the same AWS account as above).

	The Worker ID from the Worker account (visible on the
dashboard [https://workersandbox.mturk.com/mturk/dashboard]) needs to be
set in tests/config.py, which should be created by making a copy of
tests/config.py.in before setting the value. tests/config.py is
excluded from version control, so your Id will not be pushed to a remote
repository.

Commands

You can run all tests locally, simply by running:

tox

To run just the Python tests:

pytest

To run the Python tests excluding those that interact with Amazon Mechanical
Turk, run:

pytest -m "not mturk"

To run all tests except those that require a MTurk Worker ID, run:

pytest -m "not mturkworker"

To build documentation:

tox -e docs

To run flake8:

flake8

Required Experimental Files

Dallinger is flexible with regards to the form the front end takes.
However, there are a number of required or forbidden files. You can
verify that a directory is compatible by running the
verify command
from a terminal within the directory. Though just because these checks
pass doesn’t mean the experiment will run! The minimal required
structure is as follows:

[image:]

Blue items are (optional) directories (note that the experiment
directory can have any name), green items are required files (the README
file can be either a txt file or a md file), and red items are forbidden
files that will cause a conflict at run time.

Required files

	config.txt - The config file contains a variety of parameters that
affect how Dallinger runs. For more info see...

	experiment.py - This is a python file containing the custom
experiment code.

	README.txt/md - This (hopefully) contains a helpful description of
the experiment.

Forbidden files

A number of files cannot be included in the experiment directory. This
is because, when Dallinger runs, it inserts a number of required files
into the experiment directory and will overwrite any files with the same
name. The files are as follows:

	complete.html - this html page shows when dallinger is run in debug
mode and the experiment is complete.

	error_dallinger.html - this is a flexible error page that shows when
something goes wrong.

	launch.html - this page is shown when the /launch route is pinged and
the experiment starts successfully.

	waiting.html - this page shows a standard waiting room for experiments
that require multiple users at once.

	robots.txt - this file is returned to bots (e.g. from Google) that
bump into the experiment when crawling the internet.

	dallinger.js - this is a javascript library with a number of helpful
functions.

	reqwest.min.js [https://github.com/ded/reqwest] - this is
required for dallinger.js to work.

	dallinger.css - this contains several css classes that are used in the
demos.

Database API

The classes involved in a Dallinger experiment are:
Network, Node,
Vector, Info,
Transmission,
Transformation,
Participant, and
Question. The code for all these classes can
be seen in models.py. Each class has a corresponding table in the
database, with each instance stored as a row in the table. Accordingly,
each class is defined, in part, by the columns that constitute the table
it is stored in. In addition, the classes have relationships to other
objects and a number of functions.

The classes have relationships to each other as shown in the diagram
below. Be careful to note which way the arrows point. A Node is a
point in a Network that might be associated with a Participant.
A Vector is a directional connection between a Node and another
Node. An Info is information created by a Node. A
Transmission is an instance of an Info being sent along a
Vector. A Transformation is a relationship between an Info
and another Info. A Question is a survey response created by a
Participant.

[image:]

SharedMixin

All Dallinger classes inherit from a SharedMixin which provides multiple
columns that are common across tables:

	
SharedMixin.id

	a unique number for every entry. 1, 2, 3 and so on...

	
SharedMixin.creation_time

	the time at which the Network was created.

	
SharedMixin.property1

	a generic column that can be used to store experiment-specific details in
String form.

	
SharedMixin.property2

	a generic column that can be used to store experiment-specific details in
String form.

	
SharedMixin.property3

	a generic column that can be used to store experiment-specific details in
String form.

	
SharedMixin.property4

	a generic column that can be used to store experiment-specific details in
String form.

	
SharedMixin.property5

	a generic column that can be used to store experiment-specific details in
String form.

	
SharedMixin.failed

	boolean indicating whether the Network has failed which
prompts Dallinger to ignore it unless specified otherwise. Objects are
usually failed to indicate something has gone wrong.

	
SharedMixin.time_of_death

	the time at which failing occurred

Network

The Network object can be imagined as a set of other objects with
some functions that perform operations over those objects. The objects
that Network‘s have direct access to are all the Node‘s in the
network, the Vector‘s between those Nodes, Infos created by those
Nodes, Transmissions sent along the Vectors by those Nodes and
Transformations of those Infos. Participants and Questions do not exist
within Networks. An experiment may involve multiple Networks,
Transmissions can only occur within networks, not between them.

	
class dallinger.models.Network(**kwargs)

	Contains and manages a set of Nodes and Vectors etc.

Columns

	
Network.type

	A String giving the name of the class. Defaults to
“network”. This allows subclassing.

	
Network.max_size

	How big the network can get, this number is used by the full()
method to decide whether the network is full

	
Network.full

	Whether the network is currently full

	
Network.role

	The role of the network. By default dallinger initializes all
networks as either “practice” or “experiment”

Relationships

	
dallinger.models.Network.all_nodes

	All the Nodes in the network.

	
dallinger.models.Network.all_vectors

	All the vectors in the network.

	
dallinger.models.Network.all_infos

	All the infos in the network.

	
dallinger.models.Network.networks_transmissions

	All the transmissions int he network.

	
dallinger.models.Network.networks_transformations

	All the transformations in the network.

Methods

	
Network.__repr__()

	The string representation of a network.

	
Network.__json__()

	Return json description of a participant.

	
Network.calculate_full()

	Set whether the network is full.

	
Network.fail()

	Fail an entire network.

	
Network.infos(type=None, failed=False)

	Get infos in the network.

type specifies the type of info (defaults to Info). failed { False,
True, “all” } specifies the failed state of the infos. To get infos
from a specific node, see the infos() method in class
Node.

	
Network.latest_transmission_recipient()

	Get the node that most recently received a transmission.

	
Network.nodes(type=None, failed=False, participant_id=None)

	Get nodes in the network.

type specifies the type of Node. Failed can be “all”, False
(default) or True. If a participant_id is passed only
nodes with that participant_id will be returned.

	
Network.print_verbose()

	Print a verbose representation of a network.

	
Network.size(type=None, failed=False)

	How many nodes in a network.

type specifies the class of node, failed
can be True/False/all.

	
Network.transformations(type=None, failed=False)

	Get transformations in the network.

type specifies the type of transformation (default = Transformation).
failed = { False, True, “all” }

To get transformations from a specific node,
see Node.transformations().

	
Network.transmissions(status='all', failed=False)

	Get transmissions in the network.

status { “all”, “received”, “pending” }
failed { False, True, “all” }
To get transmissions from a specific vector, see the
transmissions() method in class Vector.

	
Network.vectors(failed=False)

	Get vectors in the network.

failed = { False, True, “all” }
To get the vectors to/from to a specific node, see Node.vectors().

Node

Each Node represents a single point in a single network. A Node must be
within a Network and may also be associated with a Participant.

	
class dallinger.models.Node(network, participant=None)

	A point in a network.

Columns

	
Node.type

	A String giving the name of the class. Defaults to
node. This allows subclassing.

	
Node.network_id

	the id of the network that this node is a part of

	
Node.participant_id

	the id of the participant whose node this is

Relationships

	
Node.network

	the network the node is in

	
Node.participant

	the participant the node is associated with

	
dallinger.models.Node.all_outgoing_vectors

	All the vectors going out from this Node.

	
dallinger.models.Node.all_incoming_vectors

	All the vectors coming in to this Node.

	
dallinger.models.Node.all_infos

	All Infos created by this Node.

	
dallinger.models.Node.all_outgoing_transmissions

	All Transmissions sent from this Node.

	
dallinger.models.Node.all_incoming_transmissions

	All Transmissions sent to this Node.

	
dallinger.models.Node.transformations_here

	All transformations that took place at this Node.

Methods

	
Node.__repr__()

	The string representation of a node.

	
Node.__json__()

	The json of a node.

	
Node._to_whom()

	To whom to transmit if to_whom is not specified.

Return the default value of to_whom for
transmit(). Should not return None or a list
containing None.

	
Node._what()

	What to transmit if what is not specified.

Return the default value of what for
transmit(). Should not return None or a list
containing None.

	
Node.connect(whom, direction='to')

	Create a vector from self to/from whom.

Return a list of newly created vector between the node and whom.
whom can be a specific node or a (nested) list of nodes. Nodes can
only connect with nodes in the same network. In addition nodes cannot
connect with themselves or with Sources. direction specifies the
direction of the connection it can be “to” (node -> whom), “from” (whom
-> node) or both (node <-> whom). The default is “to”.

Whom may be a (nested) list of nodes.

	Will raise an error if:

	
	whom is not a node or list of nodes

	whom is/contains a source if direction is to or both

	whom is/contains self

	whom is/contains a node in a different network

If self is already connected to/from whom a Warning
is raised and nothing happens.

This method returns a list of the vectors created
(even if there is only one).

	
Node.fail()

	Fail a node, setting its status to “failed”.

Also fails all vectors that connect to or from the node.
You cannot fail a node that has already failed, but you
can fail a dead node.

Set node.failed to True and time_of_death
to now. Instruct all not-failed vectors connected to this node, infos
made by this node, transmissions to or from this node and
transformations made by this node to fail.

	
Node.is_connected(whom, direction='to', failed=None)

	Check whether this node is connected [to/from] whom.

whom can be a list of nodes or a single node.
direction can be “to” (default), “from”, “both” or “either”.

If whom is a single node this method returns a boolean,
otherwise it returns a list of booleans

	
Node.infos(type=None, failed=False)

	Get infos that originate from this node.

Type must be a subclass of Info, the default is
Info. Failed can be True, False or “all”.

	
Node.mutate(info_in)

	Replicate an info + mutation.

To mutate an info, that info must have a method called
_mutated_contents.

	
Node.neighbors(type=None, direction='to', failed=None)

	Get a node’s neighbors - nodes that are directly connected to it.

Type specifies the class of neighbour and must be a subclass of
Node (default is Node).
Connection is the direction of the connections and can be “to”
(default), “from”, “either”, or “both”.

	
Node.receive(what=None)

	Receive some transmissions.

Received transmissions are marked as received, then their infos are
passed to update().

“what” can be:

	None (the default) in which case all pending transmissions are
received.

	a specific transmission.

Will raise an error if the node is told to receive a transmission it has
not been sent.

	
Node.received_infos(type=None, failed=None)

	Get infos that have been sent to this node.

Type must be a subclass of info, the default is Info.

	
Node.replicate(info_in)

	Replicate an info.

	
Node.transformations(type=None, failed=False)

	Get Transformations done by this Node.

type must be a type of Transformation (defaults to Transformation)
Failed can be True, False or “all”

	
Node.transmissions(direction='outgoing', status='all', failed=False)

	Get transmissions sent to or from this node.

Direction can be “all”, “incoming” or “outgoing” (default).
Status can be “all” (default), “pending”, or “received”.
failed can be True, False or “all”

	
Node.transmit(what=None, to_whom=None)

	Transmit one or more infos from one node to another.

	“what” dictates which infos are sent, it can be:

	
	None (in which case the node’s _what method is called).

	an Info (in which case the node transmits the info)

	a subclass of Info (in which case the node transmits all
its infos of that type)

	a list of any combination of the above

	“to_whom” dictates which node(s) the infos are sent to, it can be:

	
	None (in which case the node’s _to_whom method is called)

	a Node (in which case the node transmits to that node)

	a subclass of Node (in which case the node transmits to all
nodes of that type it is connected to)

	a list of any combination of the above

	Will additionally raise an error if:

	
	_what() or _to_whom() returns None or a list containing None.

	what is/contains an info that does not originate from the
transmitting node

	to_whom is/contains a node that the transmitting node does not
have a not-failed connection with.

	
Node.update(infos)

	Process received infos.

Update controls the default behavior of a node when it receives infos.
By default it does nothing.

	
Node.vectors(direction='all', failed=False)

	Get vectors that connect at this node.

Direction can be “incoming”, “outgoing” or “all” (default).
Failed can be True, False or all

Vector

A vector is a directional link between two nodes. Nodes connected by a
vector can send Transmissions to each other, but because Vectors have a
direction, two Vectors are needed for bi-directional Transmissions.

	
class dallinger.models.Vector(origin, destination)

	A directed path that links two Nodes.

Nodes can only send each other information if they are linked by a Vector.

Columns

	
Vector.origin_id

	the id of the Node at which the vector originates

	
Vector.destination_id

	the id of the Node at which the vector terminates.

	
Vector.network_id

	the id of the network the vector is in.

Relationships

	
Vector.origin

	the Node at which the vector originates.

	
Vector.destination

	the Node at which the vector terminates.

	
Vector.network

	the network the vector is in.

	
dallinger.models.Vector.all_transmissions

	All Transmissions sent along the Vector.

Methods

	
Vector.__repr__()

	The string representation of a vector.

	
Vector.__json__()

	The json representation of a vector.

	
Vector.fail()

	Fail a vector.

	
Vector.transmissions(status='all')

	Get transmissions sent along this Vector.

Status can be “all” (the default), “pending”, or “received”.

Info

An Info is a piece of information created by a Node. It can be sent
along Vectors as part of a Transmission.

	
class dallinger.models.Info(origin, contents=None)

	A unit of information.

Columns

	
Info.id

	

	
Info.creation_time

	

	
Info.property1

	

	
Info.property2

	

	
Info.property3

	

	
Info.property4

	

	
Info.property5

	

	
Info.failed

	

	
Info.time_of_death

	

	
Info.type

	a String giving the name of the class. Defaults to “info”.
This allows subclassing.

	
Info.origin_id

	the id of the Node that created the info

	
Info.network_id

	the id of the network the info is in

	
Info.contents

	the contents of the info. Must be stored as a String.

Relationships

	
Info.origin

	the Node that created the info.

	
Info.network

	the network the info is in

	
dallinger.models.Info.all_transmissions

	All Transmissions of this Info.

	
dallinger.models.Info.transformation_applied_to

	All Transformations of which this info is the info_in

	
dallinger.models.Info.transformation_whence

	All Transformations of which this info is the info_out

Methods

	
Info.__repr__()

	The string representation of an info.

	
Info.__json__()

	The json representation of an info.

	
Info._mutated_contents()

	The mutated contents of an info.

When an info is asked to mutate, this method will be executed
in order to determine the contents of the new info created.

The base class function raises an error and so must be overwritten
to be used.

	
Info.fail()

	Fail an info.

Set info.failed to True and time_of_death
to now. Instruct all transmissions and transformations involving this
info to fail.

	
Info.transformations(relationship='all')

	Get all the transformations of this info.

Return a list of transformations involving this info. relationship
can be “parent” (in which case only transformations where the info is
the info_in are returned), “child” (in which case only
transformations where the info is the info_out are returned) or
all (in which case any transformations where the info is the
info_out or the info_in are returned). The default is all

	
Info.transmissions(status='all')

	Get all the transmissions of this info.

status can be all/pending/received.

Transmission

A transmission represents an instance of an Info being sent along a
Vector. Transmissions are not necessarily received when they are sent
(like an email) and must also be received by the Node they are sent to.

	
class dallinger.models.Transmission(vector, info)

	An instance of an Info being sent along a Vector.

Columns

	
Transmission.origin_id

	the id of the Node that sent the transmission

	
Transmission.destination_id

	the id of the Node that the transmission was sent to

	
Transmission.vector_id

	the id of the vector the info was sent along

	
Transmission.network_id

	the id of the network the transmission is in

	
Transmission.info_id

	the id of the info that was transmitted

	
Transmission.receive_time

	the time at which the transmission was received

	
Transmission.status

	the status of the transmission, can be “pending”, which means the
transmission has been sent, but not received; or “received”, which means
the transmission has been sent and received

Relationships

	
Transmission.origin

	the Node that sent the transmission.

	
Transmission.destination

	the Node that the transmission was sent to.

	
Transmission.vector

	the vector the info was sent along.

	
Transmission.network

	the network the transmission is in.

	
Transmission.info

	the info that was transmitted.

Methods

	
Transmission.__repr__()

	The string representation of a transmission.

	
Transmission.__json__()

	The json representation of a transmissions.

	
Transmission.fail()

	Fail a transmission.

	
Transmission.mark_received()

	Mark a transmission as having been received.

Transformation

A Transformation is a relationship between two Infos. It is similar to
how a Vector indicates a relationship between two Nodes, but whereas a
Vector allows Nodes to Transmit to each other, Transformations don’t
allow Infos to do anything new. Instead they are a form of book-keeping
allowing you to keep track of relationships between various Infos.

	
class dallinger.models.Transformation(info_in, info_out)

	An instance of one info being transformed into another.

Columns

	
Transformation.type

	a String giving the name of the class. Defaults to
“transformation”. This allows subclassing.

	
Transformation.node_id

	the id of the Node that did the transformation.

	
Transformation.network_id

	the id of the network the transformation is in.

	
Transformation.info_in_id

	the id of the info that was transformed.

	
Transformation.info_out_id

	the id of the info produced by the transformation.

Relationships

	
Transformation.node

	the Node that did the transformation.

	
Transformation.network

	the network the transmission is in.

	
Transformation.info_in

	the info that was transformed.

	
Transformation.info_out

	the info produced by the transformation.

Methods

	
Transformation.__repr__()

	The string representation of a transformation.

	
Transformation.__json__()

	The json representation of a transformation.

	
Transformation.fail()

	Fail a transformation.

Participant

The Participant object corresponds to a real world participant. Each
person who takes part will have a corresponding entry in the Participant
table. Participants can be associated with Nodes and Questions.

	
class dallinger.models.Participant(worker_id, assignment_id, hit_id, mode)

	An ex silico participant.

Columns

	
Participant.type

	a String giving the name of the class. Defaults to
“participant”. This allows subclassing.

	
Participant.worker_id

	A String, the worker id of the participant.

	
Participant.assignment_id

	A String, the assignment id of the participant.

	
Participant.unique_id

	A String, a concatenation of worker_id
and assignment_id

	
Participant.hit_id

	A String, the id of the hit the participant is working on

	
Participant.mode

	A String, the mode in which Dallinger is running – live,
sandbox or debug.

	
Participant.end_time

	The time at which the participant finished.

	
Participant.base_pay

	The amount the participant was paid for finishing the
experiment.

	
Participant.bonus

	the amount the participant was paid as a bonus.

	
Participant.status

	String representing the current status of the participant, can be –

	working - participant is working

	submitted - participant has submitted their work

	approved - their work has been approved and they have been paid

	rejected - their work has been rejected

	returned - they returned the hit before finishing

	abandoned - they ran out of time

	did_not_attend - the participant finished, but failed the
attention check

	bad_data - the participant finished, but their data was
malformed

	missing_notification - this indicates that Dallinger has
inferred that a Mechanical Turk notification corresponding to this
participant failed to arrive. This is an uncommon, but potentially
serious issue.

Relationships

	
dallinger.models.Participant.all_questions

	All the questions associated with this participant.

	
dallinger.models.Participant.all_nodes

	All the Nodes associated with this participant.

Methods

	
Participant.__json__()

	Return json description of a participant.

	
Participant.fail()

	Fail a participant.

Set failed to True and
time_of_death to now. Instruct all
not-failed nodes associated with the participant to fail.

	
Participant.infos(type=None, failed=False)

	Get all infos created by the participants nodes.

Return a list of infos produced by nodes associated with the
participant. If specified, type filters by class. By default, failed
infos are excluded, to include only failed nodes use failed=True,
for all nodes use failed=all. Note that failed filters the infos,
not the nodes - infos from all nodes (whether failed or not) can be
returned.

	
Participant.nodes(type=None, failed=False)

	Get nodes associated with this participant.

Return a list of nodes associated with the participant. If specified,
type filters by class. By default failed nodes are excluded, to
include only failed nodes use failed=True, for all nodes use
failed=all.

	
Participant.questions(type=None)

	Get questions associated with this participant.

Return a list of questions associated with the participant. If
specified, type filters by class.

Question

A Question is a way to store information associated with a Participant
as opposed to a Node (Infos are made by Nodes, not Participants).
Questions are generally useful for storing responses debriefing
questions etc.

	
class dallinger.models.Question(participant, question, response, number)

	Responses of a participant to debriefing questions.

Columns

	
Question.type

	a String giving the name of the class. Defaults to
“question”. This allows subclassing.

	
Question.participant_id

	the participant who made the response

	
Question.number

	A number identifying the question. e.g., each participant might complete
three questions numbered 1, 2, and 3.

	
Question.question

	the text of the question

	
Question.response

	the participant’s response. Stored as a string.

Relationships

	
Question.participant

	the participant who answered the question

Methods

	
Question.__json__()

	Return json description of a question.

	
Question.fail()

	Fail a question.

Set failed to True and
time_of_death to now.

The Experiment Class

Experiments are designed in Dallinger by creating a custom subclass of the base
Experiment class. The code for the Experiment class is in experiments.py.
Unlike the other classes, each experiment involves only a
single Experiment object and it is not stored as an entry in a corresponding
table, rather each Experiment is a set of instructions that tell the server
what to do with the database when the server receives requests from outside.

	
class dallinger.experiments.Experiment(session=None)

	Define the structure of an experiment.

	
verbose

	

	
task

	

	
session

	

	
practice_repeats

	

	
experiment_repeats

	

	
recruiter

	

	
initial_recruitment_size

	

	
known_classes

	

	
public_properties

	

	
__init__(session=None)

	Create the experiment class. Sets the default value of attributes.

	
add_node_to_network(node, network)

	Add a node to a network.

This passes node to add_node().

	
assignment_abandoned(participant)

	What to do if a participant abandons the hit.

This runs when a notification from AWS is received indicating that
participant has run out of time. Calls
fail_participant().

	
assignment_returned(participant)

	What to do if a participant returns the hit.

This runs when a notification from AWS is received indicating that
participant has returned the experiment assignment. Calls
fail_participant().

	
attention_check(participant)

	Check if participant performed adequately.

Return a boolean value indicating whether the participant‘s data is
acceptable. This is mean to check the participant’s data to determine
that they paid attention. This check will run once the participant
completes the experiment. By default performs no checks and returns
True. See also data_check().

	
attention_check_failed(participant)

	What to do if a participant fails the attention check.

Runs when participant has failed the
attention_check(). By default calls
fail_participant().

	
bonus(participant)

	The bonus to be awarded to the given participant.

Return the value of the bonus to be paid to participant. By default
returns 0.

	
bonus_reason()

	The reason offered to the participant for giving the bonus.

Return a string that will be included in an email sent to the
participant receiving a bonus. By default it is “Thank you for
participating! Here is your bonus.”

	
create_network()

	Return a new network.

	
create_node(participant, network)

	Create a node for a participant.

	
data_check(participant)

	Check that the data are acceptable.

Return a boolean value indicating whether the participant‘s data is
acceptable. This is meant to check for missing or invalid data. This
check will be run once the participant completes the experiment. By
default performs no checks and returns True. See also,
attention_check().

	
data_check_failed(participant)

	What to do if a participant fails the data check.

Runs when participant has failed
data_check(). By default calls
fail_participant().

	
fail_participant(participant)

	Fail all the nodes of a participant.

	
get_network_for_participant(participant)

	Find a network for a participant.

If no networks are available, None will be returned. By default
participants can participate only once in each network and participants
first complete networks with role=”practice” before doing all other
networks in a random order.

	
info_get_request(node, infos)

	Run when a request to get infos is complete.

	
info_post_request(node, info)

	Run when a request to create an info is complete.

	
log(text, key='?????', force=False)

	Print a string to the logs.

	
log_summary()

	Log a summary of all the participants’ status codes.

	
networks(role='all', full='all')

	All the networks in the experiment.

	
node_get_request(node=None, nodes=None)

	Run when a request to get nodes is complete.

	
node_post_request(participant, node)

	Run when a request to make a node is complete.

	
recruit()

	Recruit participants to the experiment as needed.

This method runs whenever a participant successfully completes the
experiment (participants who fail to finish successfully are
automatically replaced). By default it recruits 1 participant at a time
until all networks are full.

	
run(*args, **kwargs)

	Deploy and run an experiment.

The exp_config object is either a dictionary or a
localconfig.LocalConfig object with parameters
specific to the experiment run grouped by section.

	
save(*objects)

	Add all the objects to the session and commit them.

This only needs to be done for networks and participants.

	
setup()

	Create the networks if they don’t already exist.

	
submission_successful(participant)

	Run when a participant submits successfully.

	
transformation_get_request(node, transformations)

	Run when a request to get transformations is complete.

	
transformation_post_request(node, transformation)

	Run when a request to transform an info is complete.

	
transmission_get_request(node, transmissions)

	Run when a request to get transmissions is complete.

	
transmission_post_request(node, transmissions)

	Run when a request to transmit is complete.

	
vector_get_request(node, vectors)

	Run when a request to get vectors is complete.

	
vector_post_request(node, vectors)

	Run when a request to connect is complete.

Web API

The Dallinger API allows the experiment frontend to communicate with the
backend. Many of these routes correspond to specific functions of
Dallinger’s classes, particularly
dallinger.models.Node. For example,
nodes have a connect method that creates new vectors between nodes
and there is a corresponding connect/ route that allows the frontend
to call this method.

Miscellaneous routes

GET /ad_address/<mode>/<hit_id>

Used to get the address of the experiment on the gunicorn server and to return
participants to Mechanical Turk upon completion of the experiment. This route
is pinged automatically by the function submitAssignment in dallinger.js.

GET /<directory>/<page>

Returns the html page with the name <page> from the directory called
<directory>.

GET /summary

Returns a summary of the statuses of Participants.

GET /<page>

Returns the html page with the name <page>.

Experiment routes

GET /experiment/<property>

Returns the value of the requested property as a JSON <property>.
The property must be a key in the experiment.public_properties
mapping and be JSON serializable. Experiments have no public properties
by default.

GET /info/<node_id>/<info_id>

Returns a JSON description of the requested info as info.
node_id must be specified to ensure the requesting node has access
to the requested info. Calls experiment method
`info_get_request(node, info).

POST /info/<node_id>

Create an info with its origin set to the specified node. contents
must be passed as data. info_type can be passed as data and will
cause the info to be of the specified type. Also calls experiment method
info_post_request(node, info).

POST /launch

Initializes the experiment and opens recruitment. This route is
automatically pinged by Dallinger.

GET /network/<network_id>

Returns a JSON description of the requested network as network.

POST /node/<node_id>/connect/<other_node_id>

Create vector(s) between the node and other_node by calling
node.connect(whom=other_node). Direction can be passed as data and
will be forwarded as an argument. Calls experiment method
vector_post_request(node, vectors). Returns a list of JSON
descriptions of the created vectors as vectors.

GET /node/<node_id>/infos

Returns a list of JSON descriptions of the infos created by the node as
infos. Infos are identified by calling node.infos().
info_type can be passed as data and will be forwarded as an
argument. Requesting node and the list of infos are also passed to
experiment method info_get_request(node, infos).

GET /node/<node_id>/neighbors

Returns a list of JSON descriptions of the node’s neighbors as
nodes. Neighbors are identified by calling node.neighbors().
node_type and connection can be passed as data and will be
forwarded as arguments. Requesting node and list of neighbors are also
passed to experiment method node_get_request(node, nodes).

GET /node/<node_id>/received_infos

Returns a list of JSON descriptions of the infos sent to the node as
infos. Infos are identified by calling node.received_infos().
info_type can be passed as data and will be forwarded as an
argument. Requesting node and the list of infos are also passed to
experiment method info_get_request(node, infos).

GET /node/<int:node_id>/transformations

Returns a list of JSON descriptions of all the transformations of a node
identified using node.transformations(). The node id must be
specified in the url. You can also pass transformation_type as data
and it will be forwarded to node.transformations() as the argument
type.

GET /node/<node_id>/transmissions

Returns a list of JSON descriptions of the transmissions sent to/from
the node as transmissions. Transmissions are identified by calling
node.transmissions(). direction and status can be passed as
data and will be forwarded as arguments. Requesting node and the list of
transmissions are also passed to experiment method
transmission_get_request(node, transmissions).

POST /node/<node_id>/transmit

Transmit to another node by calling node.transmit(). The sender’s
node id must be specified in the url. As with node.transmit() the
key parameters are what and to_whom and they should be passed
as data. However, the values these accept are more limited than for
the backend due to the necessity of serialization.

If what and to_whom are not specified they will default to
None. Alternatively you can pass an int (e.g. ‘5’) or a class name
(e.g. Info or Agent). Passing an int will get that info/node,
passing a class name will pass the class. Note that if the class you
are specifying is a custom class it will need to be added to the
dictionary of known_classes in your experiment code.

You may also pass the values property1, property2, property3,
property4 and property5. If passed this will fill in the relevant
values of the transmissions created with the values you specified.

The transmitting node and a list of created transmissions are sent to
experiment method transmission_post_request(node, transmissions).
This route returns a list of JSON descriptions of the created
transmissions as transmissions. For example, to transmit all infos
of type Meme to the node with id 10:

reqwest({
 url: "/node/" + my_node_id + "/transmit",
 method: 'post',
 type: 'json',
 data: {
 what: "Meme",
 to_whom: 10,
 },
});

GET /node/<node_id>/vectors

Returns a list of JSON descriptions of vectors connected to the node as
vectors. Vectors are identified by calling node.vectors().
direction and failed can be passed as data and will be forwarded
as arguments. Requesting node and list of vectors are also passed to
experiment method vector_get_request(node, vectors).

POST /node/<participant_id>

Create a node for the specified participant. The route calls the
following experiment methods:
get_network_for_participant(participant),
create_node(network, participant),
add_node_to_network(node, network), and
node_post_request(participant, node). Returns a JSON description of
the created node as node.

POST /notifications
GET /notifications

This is the route to which notifications from AWS are sent. It is also
possible to send your own notifications to this route, thereby
simulating notifications from AWS. Necessary arguments are
Event.1.EventType, which can be AssignmentAccepted,
AssignmentAbandoned, AssignmentReturned or
AssignmentSubmitted, and Event.1.AssignmentId, which is the id
of the relevant assignment. In addition, Dallinger uses a custom event
type of NotificationMissing.

GET /participant/<participant_id>

Returns a JSON description of the requested participant as
participant.

POST /participant/<worker_id>/<hit_id>/<assignment_id>/<mode>

Create a participant. Returns a JSON description of the participant as
participant.

POST /question/<participant_id>

Create a question. question, response and question_id should
be passed as data. Does not return anything.

POST /transformation/<int:node_id>/<int:info_in_id>/<int:info_out_id>

Create a transformation from info_in to info_out at the
specified node. transformation_type can be passed as data and the
transformation will be of that class if it is a known class. Returns a
JSON description of the created transformation.

Communicating With the Server

When an experiment is running, the database and the experiment class
(i.e. the instructions for what to do with the database) will be hosted
on a server, the server is also known as the “back-end”. However,
participants will take part in experiments via an interactive web-site
(the “front-end”). Accordingly for an experiment to proceed there must
be a means of communication between the front and back ends. This is
achieved with routes:

[image:]

Routes are specific web addresses on the server that respond to requests
from the front-end. Routes have direct access to the database, though
most of the time they will pass requests to the experiment which will in
turn access the database. As such, changing the behavior of the
experiment is the easiest way to create a new experiment. However it is
also possible to change the behavior of the routes or add new routes
entirely.

Requests generally come in two types: “get” requests, which ask for
information from the database, and “post” requests which send new
information to be added to the database. Once a request is complete the
back-end sends a response back to the front-end. Minimally, this will
include a notification that the request was successfully processed, but
often it will also include additional information.

As long as requests are properly formatted and correctly addressed to
routes, the back-end will send the appropriate response. This means that
the front-end could take any form. For instance requests could come from
a standard HTML/CSS/JS webpage, a more sophisticated web-app, or even
from the experiment itself.

Extra Configuration

To create a new experiment-specific configuration variable, define
extra_parameters in your experiment.py file:

def extra_parameters():
 config.register('n', int, [], False)

Here, 'n' is a string with the name of the parameter, int is its type,
[] is a list of synonyms that be used to access the same parameter, and
False is a boolean signifying that this configuration parameter is not
sensitive and can be saved in plain text. Once defined in this way, a
parameter can be used anywhere that built-in parameters are used.

Acknowledgments

Dallinger is sponsored by the Defense Advanced Research Projects Agency through
the NGS2 program. The contents of this documentation does not necessarily
reflect the position or the policy of the Government and no official
endorsement should be inferred.

Dallinger’s predecessor, Wallace, was supported in part by the National Science
Foundation through grants 1456709 and 1408652.

Dallinger’s incubator

Dallinger was one of the first scientists to perform experimental evolution. See his Wikipedia article for the specifics of his incubation experiments [https://en.wikipedia.org/wiki/William_Dallinger].

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (dallinger.experiments.Experiment method)

 	__json__() (dallinger.models.Info method)

 	(dallinger.models.Network method)

 	(dallinger.models.Node method)

 	(dallinger.models.Participant method)

 	(dallinger.models.Question method)

 	(dallinger.models.Transformation method)

 	(dallinger.models.Transmission method)

 	(dallinger.models.Vector method)

 	
 	__repr__() (dallinger.models.Info method)

 	(dallinger.models.Network method)

 	(dallinger.models.Node method)

 	(dallinger.models.Transformation method)

 	(dallinger.models.Transmission method)

 	(dallinger.models.Vector method)

 	_mutated_contents() (dallinger.models.Info method)

 	_to_whom() (dallinger.models.Node method)

 	_what() (dallinger.models.Node method)

A

 	
 	add_node_to_network() (dallinger.experiments.Experiment method)

 	all_incoming_transmissions (dallinger.models.Node attribute)

 	all_incoming_vectors (dallinger.models.Node attribute)

 	all_infos (dallinger.models.Network attribute)

 	(dallinger.models.Node attribute)

 	all_nodes (dallinger.models.Network attribute)

 	(dallinger.models.Participant attribute)

 	all_outgoing_transmissions (dallinger.models.Node attribute)

 	all_outgoing_vectors (dallinger.models.Node attribute)

 	
 	all_questions (dallinger.models.Participant attribute)

 	all_transmissions (dallinger.models.Info attribute)

 	(dallinger.models.Vector attribute)

 	all_vectors (dallinger.models.Network attribute)

 	assignment_abandoned() (dallinger.experiments.Experiment method)

 	assignment_id (dallinger.models.Participant attribute)

 	assignment_returned() (dallinger.experiments.Experiment method)

 	attention_check() (dallinger.experiments.Experiment method)

 	attention_check_failed() (dallinger.experiments.Experiment method)

B

 	
 	base_pay (dallinger.models.Participant attribute)

 	bonus (dallinger.models.Participant attribute)

 	
 	bonus() (dallinger.experiments.Experiment method)

 	bonus_reason() (dallinger.experiments.Experiment method)

 	BotBase (class in dallinger.bots)

C

 	
 	calculate_full() (dallinger.models.Network method)

 	complete_questionnaire() (dallinger.bots.BotBase method)

 	connect() (dallinger.models.Node method)

 	contents (dallinger.models.Info attribute)

 	
 	create_network() (dallinger.experiments.Experiment method)

 	create_node() (dallinger.experiments.Experiment method)

 	creation_time (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

D

 	
 	data_check() (dallinger.experiments.Experiment method)

 	data_check_failed() (dallinger.experiments.Experiment method)

 	destination (dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

 	
 	destination_id (dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

 	driver (dallinger.bots.BotBase attribute)

E

 	
 	end_time (dallinger.models.Participant attribute)

 	
 	Experiment (class in dallinger.experiments)

 	experiment_repeats (dallinger.experiments.Experiment attribute)

F

 	
 	fail() (dallinger.models.Info method)

 	(dallinger.models.Network method)

 	(dallinger.models.Node method)

 	(dallinger.models.Participant method)

 	(dallinger.models.Question method)

 	(dallinger.models.Transformation method)

 	(dallinger.models.Transmission method)

 	(dallinger.models.Vector method)

 	
 	fail_participant() (dallinger.experiments.Experiment method)

 	failed (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	full (dallinger.models.Network attribute)

G

 	
 	get_network_for_participant() (dallinger.experiments.Experiment method)

H

 	
 	hit_id (dallinger.models.Participant attribute)

I

 	
 	id (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	Info (class in dallinger.models)

 	info (dallinger.models.Transmission attribute)

 	info_get_request() (dallinger.experiments.Experiment method)

 	info_id (dallinger.models.Transmission attribute)

 	info_in (dallinger.models.Transformation attribute)

 	info_in_id (dallinger.models.Transformation attribute)

 	
 	info_out (dallinger.models.Transformation attribute)

 	info_out_id (dallinger.models.Transformation attribute)

 	info_post_request() (dallinger.experiments.Experiment method)

 	infos() (dallinger.models.Network method)

 	(dallinger.models.Node method)

 	(dallinger.models.Participant method)

 	initial_recruitment_size (dallinger.experiments.Experiment attribute)

 	is_connected() (dallinger.models.Node method)

K

 	
 	known_classes (dallinger.experiments.Experiment attribute)

L

 	
 	latest_transmission_recipient() (dallinger.models.Network method)

 	
 	log() (dallinger.experiments.Experiment method)

 	log_summary() (dallinger.experiments.Experiment method)

M

 	
 	mark_received() (dallinger.models.Transmission method)

 	max_size (dallinger.models.Network attribute)

 	
 	mode (dallinger.models.Participant attribute)

 	mutate() (dallinger.models.Node method)

N

 	
 	neighbors() (dallinger.models.Node method)

 	Network (class in dallinger.models)

 	network (dallinger.models.Info attribute)

 	(dallinger.models.Node attribute)

 	(dallinger.models.Transformation attribute)

 	(dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

 	network_id (dallinger.models.Info attribute)

 	(dallinger.models.Node attribute)

 	(dallinger.models.Transformation attribute)

 	(dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

 	
 	networks() (dallinger.experiments.Experiment method)

 	networks_transformations (dallinger.models.Network attribute)

 	networks_transmissions (dallinger.models.Network attribute)

 	Node (class in dallinger.models)

 	node (dallinger.models.Transformation attribute)

 	node_get_request() (dallinger.experiments.Experiment method)

 	node_id (dallinger.models.Transformation attribute)

 	node_post_request() (dallinger.experiments.Experiment method)

 	nodes() (dallinger.models.Network method)

 	(dallinger.models.Participant method)

 	number (dallinger.models.Question attribute)

O

 	
 	origin (dallinger.models.Info attribute)

 	(dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

 	
 	origin_id (dallinger.models.Info attribute)

 	(dallinger.models.Transmission attribute)

 	(dallinger.models.Vector attribute)

P

 	
 	Participant (class in dallinger.models)

 	participant (dallinger.models.Node attribute)

 	(dallinger.models.Question attribute)

 	participant_id (dallinger.models.Node attribute)

 	(dallinger.models.Question attribute)

 	participate() (dallinger.bots.BotBase method)

 	practice_repeats (dallinger.experiments.Experiment attribute)

 	print_verbose() (dallinger.models.Network method)

 	property1 (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	
 	property2 (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	property3 (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	property4 (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	property5 (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	public_properties (dallinger.experiments.Experiment attribute)

Q

 	
 	Question (class in dallinger.models)

 	
 	question (dallinger.models.Question attribute)

 	questions() (dallinger.models.Participant method)

R

 	
 	receive() (dallinger.models.Node method)

 	receive_time (dallinger.models.Transmission attribute)

 	received_infos() (dallinger.models.Node method)

 	recruit() (dallinger.experiments.Experiment method)

 	recruiter (dallinger.experiments.Experiment attribute)

 	
 	replicate() (dallinger.models.Node method)

 	response (dallinger.models.Question attribute)

 	role (dallinger.models.Network attribute)

 	run() (dallinger.experiments.Experiment method)

 	run_experiment() (dallinger.bots.BotBase method)

S

 	
 	save() (dallinger.experiments.Experiment method)

 	session (dallinger.experiments.Experiment attribute)

 	setup() (dallinger.experiments.Experiment method)

 	sign_off() (dallinger.bots.BotBase method)

 	
 	sign_up() (dallinger.bots.BotBase method)

 	size() (dallinger.models.Network method)

 	status (dallinger.models.Participant attribute)

 	(dallinger.models.Transmission attribute)

 	submission_successful() (dallinger.experiments.Experiment method)

T

 	
 	task (dallinger.experiments.Experiment attribute)

 	time_of_death (dallinger.models.Info attribute)

 	(dallinger.models.SharedMixin attribute)

 	Transformation (class in dallinger.models)

 	transformation_applied_to (dallinger.models.Info attribute)

 	transformation_get_request() (dallinger.experiments.Experiment method)

 	transformation_post_request() (dallinger.experiments.Experiment method)

 	transformation_whence (dallinger.models.Info attribute)

 	transformations() (dallinger.models.Info method)

 	(dallinger.models.Network method)

 	(dallinger.models.Node method)

 	transformations_here (dallinger.models.Node attribute)

 	Transmission (class in dallinger.models)

 	
 	transmission_get_request() (dallinger.experiments.Experiment method)

 	transmission_post_request() (dallinger.experiments.Experiment method)

 	transmissions() (dallinger.models.Info method)

 	(dallinger.models.Network method)

 	(dallinger.models.Node method)

 	(dallinger.models.Vector method)

 	transmit() (dallinger.models.Node method)

 	type (dallinger.models.Info attribute)

 	(dallinger.models.Network attribute)

 	(dallinger.models.Node attribute)

 	(dallinger.models.Participant attribute)

 	(dallinger.models.Question attribute)

 	(dallinger.models.Transformation attribute)

U

 	
 	unique_id (dallinger.models.Participant attribute)

 	
 	update() (dallinger.models.Node method)

V

 	
 	Vector (class in dallinger.models)

 	vector (dallinger.models.Transmission attribute)

 	vector_get_request() (dallinger.experiments.Experiment method)

 	vector_id (dallinger.models.Transmission attribute)

 	
 	vector_post_request() (dallinger.experiments.Experiment method)

 	vectors() (dallinger.models.Network method)

 	(dallinger.models.Node method)

 	verbose (dallinger.experiments.Experiment attribute)

W

 	
 	worker_id (dallinger.models.Participant attribute)

Vagrant installation

Install the Vagrant virtual machine management system from Hashicorp [https://www.vagrantup.com/docs/installation/] and the VirtualBox [https://www.virtualbox.org/] virtualization software.

If you already use a different Virtual Machine provider, it may be compatible with Vagrant, in which case you may need to modify the Vagrantfile. This method is not recommended.

Starting Dallinger

The first time you start the virtual machine, Vagrant will download an Ubuntu Linux image and run installation steps. This will take some time and downloads a large amount of data through the internet connection. The command to begin this process is:

vagrant up

You can then connect to the vagrant machine over ssh and interact with dallinger. This is done through:

vagrant ssh

You will be in the /vagrant directory which is shared with the host machine. You can use Dallinger and run tests as usual from this prompt. When running an experiment, you should specify port 5000 as the experiment’s port, which will then be made available to the host on port 5000.

When you’re finished, shut the Vagrant machine down by running:

vagrant halt

Waiting rooms

By default, Dallinger begins an experiment as soon as a user agrees to
the informed consent form and has read the instructions. However, some
experiment designs require multiple users to be synchronized.

For this reason, Dallinger includes a waiting room implementation, which
will hold users between instructions and the experiment until a certain
number are ready.

Using the waiting room

To use the waiting room, users must first be directed into it rather than
the experiment. The Networked chatroom-based coordination game demo shows an example of this.

Your instructions.html should call go_to_page('waiting') and should
not call create_participant.

You will also need to define how many users should be held together before
progressing. This is done through the quorum global variable. The waiting
room will call a javascript function called getQuorum which should set
quorum to be the appropriate value for your experiment.

Google Summer of Code

DARPA’s Next Generation Social Science (NGS2) program aims to build new
capabilities for performing rigorous, reproducible behavioral and social
science research at scales necessary to understand emergent properties of
human social systems. As part of this program, our group at UC Berkeley is
developing Dallinger, a software platform for laboratory automation in the
behavioral and social sciences. Dallinger implements culture-on-a-chip,
in analogy to the microfluidics and lab-on-a-chip technologies that have
revolutionized biotechnology. In the culture-on-a-chip technique, crowdsourced
experiments are fully automated and abstracted into single function calls that
can be inserted into higher-order algorithms. Through laboratory automation,
the system recruits participants, obtains their informed consent, arranges them
into a network, coordinates their communication, records the data they produce,
pays them, recruits new batches of participants contingent on the structure of
the experiment, and validates and manages the resulting data.

The following is a partial list of project ideas.

Application instructions

Please send an email to dallinger-admin@lists.berkeley.edu
expressing your interest in participating in GSoC with the Dallinger project.
In your application, please include:

	Your name and how to contact you (e.g. an email address).

	What project are you proposing to do.

	A description of your technical skills, experience, and interest in software development.

	If possible, please link to projects (for school or otherwise) that you have completed.

	A proposed schedule.

Please read and apply via https://summerofcode.withgoogle.com/get-started/.

Technology stack

Our stack includes Python, Flask, PostgreSQL, SQLAlchemy, Amazon Mechanical
Turk, boto, tox, pytest, Redis, Selenium, PhantomJS, JavaScript, HTML, and
CSS, all deployed on Heroku & AWS. We use Git and GitHub for version control
and updates. You do not need to have used any of these before, though it would
help to have experience with Python and general web development.

Projects ideas

1

A valuable contribution to the Dallinger platform is to extend the range of
experiments that can be run on it. A good summer project might implement
a new experiment paradigm drawn from the behavioral or social sciences.
Implementing a new paradigm requires that you read and understand a review
paper or two on the paradigm and then build a small web application
implementing the experiment and integrating with the Dallinger platform.

Possible paradigms include:

	Keynesian beauty contest [https://en.wikipedia.org/wiki/Keynesian_beauty_contest]

	Implicit Association Test [https://implicit.harvard.edu/implicit/takeatest.html]

	Poietic generator [https://en.m.wikipedia.org/wiki/Poietic_Generator]

	Asch conformity experiment [https://en.m.wikipedia.org/wiki/Asch_conformity_experiments]

	Belief polarization [https://en.m.wikipedia.org/wiki/Attitude_polarization]

	Turing test [https://en.m.wikipedia.org/wiki/Turing_test]

	Schelling spatial segregation [https://www.stat.berkeley.edu/~aldous/157/Papers/Schelling_Seg_Models.pdf]

	Iterated prisoners dilemma [https://en.m.wikipedia.org/wiki/Prisoner’s_dilemma]

	Prediction market [https://en.wikipedia.org/wiki/Prediction_market]

	Voronoi game [http://as.nyu.edu/docs/IO/2791/Laver-Sergenti.pdf]

	Dutch auction [https://en.m.wikipedia.org/wiki/Dutch_auction]

	Fair division problem [https://en.m.wikipedia.org/wiki/Fair_division]

	Delphi method [https://en.m.wikipedia.org/wiki/Delphi_method]

Skills required: Python, JavaScript, general front-end development.

2

Another way to contribute to the Dallinger platform is to add new functionality
to the core platform, independent of any particular kind of experiment run on
it. Here are a few discrete pieces of functionality that could make good summer
projects:

	Browser fingerprinting. Use the valve2 [https://github.com/Valve/fingerprintjs2]

browser fingerprinting library to detect when a person participates twice in an
experiment, without exposing personally identifiable information.
+ Speed testing. One way that an experiment can go wrong is if the participant’s
internet connection cannot keep up. Integrate a speed-testing mechanism that
excludes participants whose internet connections are too slow for the experiment.

3

A third way to contribute to the Dallinger platform is to improve its efficiency.
For example, you might:

	Perform a blocked-time analysis of our experiment pipeline and determine which stages of the pipeline are limiting the overall throughput of the system. Then, use that knowledge to implement an optimization that decreases experiment run times.

	Improve the debugging workflow to minimize the time between development iterations.

 _static/file.png

_static/corner.jpg

_static/up-pressed.png

_static/class_chart.jpg
Experiment

Participant Network

Question

Transmission Transformation

_static/minus.png

_static/bartlett-drawing.jpg
N BB ds
Boood B B
XTI XAERY

_static/screenshot.jpg
Level:3 Moves: 16

_static/front_back_layout.jpg
Back-end

Database Experiment

Front-end

o

_images/screenshot.png

_images/directories.jpg
Experiment directory

v’ config.txt v/ experiment.py v README.txt/md

templates
| X complete.html X error_wallace.html X launch.html |

static

X robots.txt
scripts

Css

X wallace.js X wallace.css

X reqwest.min.js

nav.xhtml

 Table of Contents

 		Dallinger

 		Installation

 		Install Python

 		Install Postgres

 		Create the Database

 		Install Dallinger

 		Install Heroku

 		Install Redis

 		Installing Dallinger with Anaconda

 		Getting Python 2.7 started if you have Anaconda 3

 		Install psycopg2

 		Install Dallinger

 		Confirm Dallinger works

 		Re-link Open SSL

 		Setting Up AWS, Mechanical Turk, and Heroku

 		Create the configuration file

 		Amazon Web Services API Keys

 		Amazon Mechanical Turk

 		Heroku

 		Open Science Framework (optional)

 		Done?

 		Demoing Dallinger

 		Running bots as participants

 		Writing a bot

 		Running bots locally

 		Running a single bot

 		Scaling bots locally

 		Learning to Use Dallinger

 		Beginner

 		Key concepts in Dallinger

 		Dallinger as a web app

 		Experimental design

 		Example walkthroughs

 		Intermediate

 		Experimental design

 		Running experiments

 		Advanced

 		Experimental design

 		Running experiments

 		Monitoring a Live Experiment

 		Command line tools

 		Papertrail

 		Setting up alerts

 		Viewing the PostgreSQL Database

 		Command-Line Utility

 		verify

 		bot

 		debug

 		sandbox

 		deploy

 		logs

 		summary

 		export

 		qualify

 		hibernate

 		awaken

 		destroy

 		Configuration

 		Built-in configuration

 		Python module

 		Registration on the OSF

 		2048

 		Bartlett (1932), stories

 		Networked chatroom-based coordination game

 		Concentration

 		Transmitting functions

 		Bartlett (1932), drawings

 		Markov Chain Monte Carlo with People

 		Rogers' Paradox

 		The Sheep Market

 		Snake

 		Vox Populi (Wisdom of the crowd)

 		Developer Installation

 		Install Python 2.7

 		Install Postgres

 		Create the Database

 		Set up a virtual environment

 		Install prerequisites for building documentation

 		Install Dallinger

 		Running the tests

 		Amazon Mechanical Turk Integration Tests

 		Commands

 		Required Experimental Files

 		Required files

 		Forbidden files

 		Database API

 		SharedMixin

 		Network

 		Columns

 		Relationships

 		Methods

 		Node

 		Columns

 		Relationships

 		Methods

 		Vector

 		Columns

 		Relationships

 		Methods

 		Info

 		Columns

 		Relationships

 		Methods

 		Transmission

 		Columns

 		Relationships

 		Methods

 		Transformation

 		Columns

 		Relationships

 		Methods

 		Participant

 		Columns

 		Relationships

 		Methods

 		Question

 		Columns

 		Relationships

 		Methods

 		The Experiment Class

 		Web API

 		Miscellaneous routes

 		Experiment routes

 		Communicating With the Server

 		Extra Configuration

 		Acknowledgments

 		Dallinger's incubator

_images/screenshot.jpg
Level:3 Moves: 16

_images/front_back_layout.jpg
Back-end

Database Experiment

Front-end

o

_images/bartlett-drawing.jpg
N BB ds
Boood B B
XTI XAERY

_images/class_chart.jpg
Experiment

Participant Network

Question

Transmission Transformation

_static/comment-bright.png

_static/up.png

_static/ajax-loader.gif

_static/down.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/screenshot.png

_static/plus.png

_static/directories.jpg
Experiment directory

v’ config.txt v/ experiment.py v README.txt/md

templates
| X complete.html X error_wallace.html X launch.html |

static

X robots.txt
scripts

Css

X wallace.js X wallace.css

X reqwest.min.js

